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[)eﬁning'rerrnf

Equal-time <= time evolution <= space-like.
Equal-space <= space evolution <= time-like.

Using the zero-curvature form of Lax pairs (U, V'), so that the equations
of motion are given by [Lax '68; Ablowitz, et al. '74]:

0=08,U— 8,V +[U,V],

and the Lax matrices obey the auxiliary linear problem:

9,0 = UL, 8,0 = V.




The Equal-Time Picture
Poisson Brackets

The equal-time Poisson brackets for an integrable system given in terms
of a Lax pair can be written in terms of a classical r-matrix [Sklyanin '79]:

{Ui(@;0), Ua(y; )} = [riz(X — ), Ur(z; A) + Uz (y; w)]o(x — y),

where 715 satisfies the classical Yang-Baxter equation [Semenov-Tian-Shansky
'83]:
[r12(A = 1), 113(N)] + [r12(A = p); m23 ()] + [r13(A), m23(1)] = 0.

The time evolution of the system is then defined through the Poisson
bracket and the Hamiltonian:

Oif = {HS’f}S'
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The Equal-Time Picture

We consider two types of boundary conditions for x in the interval
x €[-L, L]
» Periodic: f(L) = f(—L) for all fields f.
> Reflective: We need to introduce some K-matrices to sit at the
boundaries. They must to satisfy [Sklyanin '87]:

0=Ki1(MNria(A + p) Ky 2(p) — K 2(p)r12(A + p) K+ 1(A)
+ [r12(A = p), K+ 1(A) K+ 2 ()]

We only consider non-dynamical boundary conditions, so that
0Ky =0.




The Equal-Time Picture

To generate conserved quantities, define the monodromy matrix as a
solution of the spatial part of the ALP in place of W:

Tz, 4, A) = P exp / U(&N)de.
Yy

For periodic boundary conditions, the trace of this is called the transfer
matrix:
tg(\) = trTs(L, —L; \),

while for reflective boundary conditions, the transfer matrix is [Sklyanin '87]:

ts(\) = tr{ KL (W T (L, —L; NV K (\)T5 (L, —L; —\) }.



The Equal-Time Picture

Conserved Quantities

We want local quantities, so we consider Gg(\) = In tg(A) and
Gg(A) = In tg(A). Expanding these about powers of A:

Z}\kg(k) Z}\kg(k)

we find local quantities that Poisson commute with one another:

(69,6915 = 0= (G, 69s.

If we call one of these Qék) or Qék) the Hamiltonian, then this provides us
with a hierarchy of conserved Poisson commuting quantities.
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The Equal-Time Picture

V-Matrices

Each Hamiltonian defines an integrable system. As they were derived
from the U-matrix, the V-matrix will be what differs between them.

The V-matrices associated to each of the Hamiltonians (with periodic
boundary conditions) are taken from the expansion of [Semenov-Tian-Shansky
'83]:

Vo (@; A, 1) = t5 " ()tri{ T 1 (L, s p)ria(p — N T (2, —L; M)}
For reflective boundary conditions, we instead expand (where we use
rE = I(,U, + )\)) [Avan, Doikou '08]:

Va(z) = t5 (wtr { K41 (1) Ts,1 (L, 25 ) r12Ts,1 (2, —Ls N K 1 (1) T 1 (—N)
+ K4 1) T () K- 1 (1) Ts 1 (@, —Ly =N Ts 1 (L, a5 =) }.
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The Equal-Time Picture

Consider the isotropic Landau-Lifshitz model:
8,8 = i3 x (829),
where S = (51, S2,55)T and S? + 52 + 52 = |S|2 = 1. The Lax pair for

this model is [Lakshmanan '77; Takhtajan '77]:

_i S3 Sl—iSQ :i _L _i
U_2>\ (Sl—l-ng —S3 > _2/\5’ V—2)\2,S’ QA(azS)S.

The U-matrix combines with the r-matrix r = %P, where P is the
permutation matrix, to give the following Poisson brackets:

{8i(2), Sj(y)}s = —i€ijuSk(z)d(z — y).



The Equal-Time Picture

Example

The first two non-trivial (periodic) conserved quantities that we generate
from the U-matrix are:

. L L
590,51 — 510,8 -1
H(O):l/ 20051 = 510253 | o _ / 2
S 2/, 175, dz, S T/, % (02:5;)°dx

and the associated V-matrices are (up to constant factors):

1

0) — 1 —
v S v 2)\2 2)\(

9,5)8.

The conserved quantities can be recognised as the total momentum and
Hamiltonian (up to constant factors), and the V-matrices can be
recognised as the two components of the Lax pair.
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The Equal-Space Picture

Poisson Brackets

We can construct an equivalent set of Poisson brackets which govern the
“space evolution” of the fields [Caudrelier, Kundu '15; Avan, et al. '16].

For symmetry with the equal-time approach, we want to write these
brackets in terms of an r-matrix:

Vit A), Valta; ) b = [riz(A — w), Va(ta; A) + Va(tz; p)]o(t1 — to).

The r-matrix we would use is the same as the r-matrix from the
equal-time approach.

The “space evolution” of the system is then defined through this
equal-space Poisson bracket and some spatially conserved Hamiltonian:

arf = {Hva}T'
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The Equal-Space Picture

Boundary Conditions

Like in the equal-time picture, we consider two types of boundary
conditions for ¢ in the interval t € [—7, 7]:

» Periodic: §f(7) = f(—7) for all fields f.

» Reflective: We again need some K-matrices to describe the
boundaries, which are solutions of the classical reflection equation.

As we use the same r-matrix, we can use the same K -matrices.

We still only consider non-dynamical boundary conditions, although
we mean spatially independent this time, i.e. 9, K+ = 0.
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The Equal-Space Picture

“Conserved” Quantities

The equal-space monodromy matrix is built as a solution to the time
component of the auxiliary linear problem, 0,V = V' W:

1
Ty (b, b3 X) = P exp / V(€ A,

Jto

The equal-space transfer matrix is then found by taking the trace of this
(for periodic boundary conditions):

tp(A) =t (7, =735 A),

and the reflective version is similarly analogous to the equal-time picture:

tr(\) = tr{ Ky (N Tp(r, -1 VK- (NI (r, =7 =X ).
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The Equal-Space Picture

“Conserved” Quantities

The (temporally) local quantities are found from the logarithm of these:
Gr(A) =Intp(A), Gr(A) = In (),

which are expanded about powers of A to give local Poisson commuting
(with respect to the equal-space bracket) quantities:

{61,991 =0=1{G1".0{}r.

In analogy to relativistic models, where momentum is to space as energy
to time, we can see that:

If: {gs = Hamlltoman} then: { %) — Dual Momentum}

QS = Momentum gé!) = Dual Hamiltonian
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The Equal-Space Picture

Just as we found the V-matrix from the U-matrix in the equal-time
picture, we expect to be able to find the U-matrix from the V-matrix in
the equal-space picture.

The generator for these U-matrices is given by:

Ua(t; A, 1) =t (u)trr { Tp 1 (7, 65 )12 (e — A Top 1 (8, —75 M) }-

For reflective boundary conditions, the generator is instead [Doikou, et al.
18]:

Ua(t) = {;1(u)tr1{K+,1 ()T (7, 5 )T (=75 A) K- 1 (N)Tfi(_”
+E 1 (1) Ty () K- 1 ()T (8 =75 = Ao T (7,6 =A) ).



The Equal-Space Picture
Example

We again use the isotropic Landau-Lifshitz equation as an example (now
written in terms of its space evolution):

9,8 =%, 8,% = iS x (8,8) - 5|2,

where 3= (21, Yo, E3)T and S1Xq + 5935 4 S333 = g 3= 0.
Combining the V-matrix:

_lg 1 Zs i) lg 1
V_Z/\QS 2\ <21+i22 —33 5_2)\25 2)\28’

with the Yangian r-matrix from the equal-time picture r = %P, we find
the following equal-space Poisson brackets:

{Si(t1), Sj(t2)}r =0,
{Si(t1), T (t2)}r = (S5 — di) (t1 — t2),
{Zi(t1), Zj(t2)}r = (8i%5 — S;%:) 8(t1 — ta).
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The Equal-Space Picture
Example

The first two non-trivial (periodic) conserved quantities that we generate
from the V-matrix are [Findlay '18]:

i /T {528,551 — 510452

H(O):_
L) 1+ 53

+ %(E% + 32+ Z%)} dt,

1/
Hq(}) = 7[ {233,533 + 0¢ X3 + (E1 — iX2)0¢(S1 +1i52)

3,5(51 = ISQ) S1+iSs
S1 — 199 1+ 53

+0,(X1 —i¥2) — (31 — iZZ)%ﬂ &

— S333

<(21 —i%5)8,55

The first of these turns out to be the equal-space Hamiltonian for this
model, and the second does indeed (eventually) give a transport type
equation:

9.5 0,5, 0,5 x 0,3
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The Equal-Space Picture

The first two non-trivial U-matrices are comparatively simple (after
removing constant factors):

1
2\

s, U =~ g_ izs,

U —
2)\2 2\

which are just the U- and V-matrices in the Lax pair.

These match the first two V-matrices generated from the U-matrix, but
at higher orders they diverge:

(2)__ L2
v 2/\35 2)\2(8 S)S + 2)\895.5'4- (8 S)28
1 1
(2)__ _ = 32
U 2)\35 N 2)\(&5 )S’+4)\E S.



Reflective Boundary Conditions =

We consider the K-matrix [de Vega, Gonzalez-Ruiz '94]:

d+ B+ — i’Yi)
Ki=a. 14+ )\ . .
S <5i +ive  —dy

At x = £ L the space-like boundary conditions are [Doikou, Karaiskos "11]:

a+ (520,81 — 810:82) = £(B+S2 — v+ 51),
a+ (510,83 — §30;51) = £(d+S1 — B+ S3),
a+ (520,83 — S30;52) = £(d+Ss — 7+53).

At t = 47 the time-like boundary conditions are [Findlay '18]:

a+ =0, 0=p5+S1 +v+S2 + diSs.



From Hierarchies to “Lattices”

In the equal-time picture, we get a hierarchy of time-flows.
In the equal-space picture, we get a hierarchy of space-flows.

By alternating which picture is considered, we can build a 2-dimensional
“lattice” of integrable systems. This is not a priori commutative.

2 O T—)
14 ¢ —

o
—
o

d
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From Hierarchies to “Lattices”
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Blue circle - The isotropic LL model
Green dashed region - The usual isotropic LL hierarchy

Red circle - A new, 6-field system



From Hierarchies to “Lattices”

Start from the isotropic Landau-Lifshitz U-matrix. Then generate the
V-matrix. Then use this to generate a different U-matrix:

U _ (U(O)7 V(l)) N (U(Q), V(l)).
This new model will have Lax pair:

U= g_ Lng

1 ( 1 1
2)3 2)\2 2\

1 5 - b
AS)S+ 555, V=558 8.

The corresponding equations of motion are [Findlay '18]:
L R I
0,8 =iS x (8;2) + 5|2|22,
8,5 = i% x (8,5) — %|i|2(§ x (0:9)) +i5(5 - (S x (8:9)))

N
+ 325+ 5(10.S1” - 5151,



General Poisson Structure

Let’s actually look at the anisotropic Landau-Lifshitz equation now. The
equations of motion are [Landau, Lifshitz '65]:

8,5 =i x (JS + 825),
where J = diag(J1, Jo, J3), with J; < Jo < J3, describes the anisotropy.

The U component of the Lax pair is written [Sklyanin '79]:

U—i cs(\, k)Ss ns(\, k)Sy —ids(\, k)So
TP\ ns(\, k)S; + ids(A, k)Ss —cs(A, k) Ss ’

where:

1 [J2 — J
p:—\/J3—J1, k= 2 1.
2 Js—Ji




General Poisson Structure

The r-matrix associated to this Lax matrix is:

1 0 0 0 00 0 1
inp 0 -1 0 O 00 1 0
r()\):7 cs(\ k) 0 0 -1 0 +ns(\ k) 010 0
0 0 0 1 1 0 0 O

0 0 0 -1

0O 0 1 0

+ds(\, k) 010 o

-1 0 0 0

This gives sus-type Poisson brackets:

{Si(2), Sj(y)}s = —i€ijuSk(z)o(z — y).



General Poisson Structure
r-Matrix

For any U-matrix compatible with this r-matrix, the associated

V-matrices will all have the same form:

V:( Ss(p)es(n — A) &WMJH*M*Sﬂm$W*AD
S1(pu)ns(p — A) + iSz(p)ds(u — A) —Ss(p)es(n — A)

where we are expanding in p. Then, using the equal-space Poisson
bracket expression, we can find the time-like Poisson structure between

the coefficients in the of S;(u) about powers of y, labelled Sgk):

lq! +q—n
(s sy = (pfq(in)!Sgcp e pta>n,
B 0 p+aq<n,

where n is the order in the hierarchy of the V-matrix that we are
considering.
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General Poisson Structure

By defining:
1 _
gmp) _ g(n—p)
7 (n _ p)! (2 ’
the time-like Poisson brackets between these fields are (with
0<pgq<n)
(n,p+q)
gup) (4 g9 (4 _ 1S €ijk 0(t1 —t2) p+q<m,
{877 (t1), ;7 (t2) }r 0 P S

An identical process gives the equal-time Poisson structure at order n as:

(n,p+q)
(n.p) (na) _ 15 €ijed(z—y) ptqg<nm,
(507, 57w = { ; L



General Poisson Structure
Examples

Let's look at some examples. In the equal-space hierarchy built out of the
Landau-Lifshitz V-matrix, the Landau-Lifshitz U-matrix appears at order
0, so we choose n = 0 in the above formulae.

The formulae then tell us that the equal-time Poisson brackets for the
Landau-Lifshitz U-matrix are:

{5°9(@), 57 )} 5 = SV eign 6z — ),

which is just the usual su,-type algebra.
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General Poisson Structure
Examples

The Landau-Lifshitz V-matrix appears at order 1 in the equal-time
hierarchy generated by the U-matrix, so we choose n = 1 for that.

We then have two sets of fields, Si(l’o) and Sl»(l’l) which obey the
equal-space Poisson brackets of the Landau-Lifshitz model:

SE ()} = S8 Ve (1 — t2),
{S“ %), SOV (1)} = ST Vein 6t — t2),
{s{"V(t), 5, (t2)}r = 0.

This is a special Euclidean SE(3)-type algebra, which is equivalent to the
equal-space Poisson brackets given before, with:

st =g, S0 — (£ x 9)..
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Non-Ultralocal Models

So far we have only discussed ultralocal models, where the Poisson
brackets depended only on 4. For non-ultralocal models (where we also
have a ¢’) the Poisson brackets are written in terms of an (r,s) pair
instead of just the r-matrix [Maillet '86]:

{Ui(@;0), Ua(y; ) } s = [r12(A — ), U (x5 A) + Uz (y; A)]6(z — )
+ [s12(A — 1), Ur(z; A) — Ua(y; V)]o(x — y)
+ 2519(A — )’ (z — ).

The (r, s) pair needs to satisfy the general classical Yang-Baxter
equation:

0= [(r12 + s12)(A — ), (r13 — s13) (V)]
+ [(r12 — s12)(A — ), (123 — $23) (W)]
+ [(r13 — 513)(A), (123 — 523) ()]
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Non-Ultralocal Models

We consider a simple example of a non-ultralocal model, the real
modified Korteweg-de Vries equation:

O = 60290 — Bgv,

which has the following Poisson brackets and Hamiltonian:

L
[o(a),vl)}s = /(2 — y). Hy=3 [ (woto—viys

The Lax pair for this model can be written [Ablowitz, et al. '74]:

>\ .
—er v
U= (—iv e)‘> ’

B 4e3* — 2e*? —4ie? v + 2ie* 9, v — 1020 + 2iv®
die*v + 2ie* 0, v + 1020 — 2iv? 4P 4 2eM?



Non-Ultralocal Models

A suitable (r, s) pair for this Lax pair is:

—4 Bl
eX—e= X 0 9 Z*+1
1 0 0 —-&H 0
T(A) — 5 e)\+1 er—1 ,
0 -5t 0
-1 —4
St S e
0O 0 0 -1
1 0O 0 1 0
sN=35[0 1 0 o0
-1 0 0 O

In broad terms, we have:

U+ (r,s) = {}g-



Non-Ultralocal Models

A suitable (r, s) pair for this Lax pair is:

—4 Bl
eX—e= X 0 9 Z*+1
1 0 0 —-&H 0
T(A) — 5 e)\+1 er—1 ,
0 -5t 0
-1 —4
St S e
0O 0 0 -1
1 0O 0 1 0
sN=35[0 1 0 o0
-1 0 0 O

However, this also works:

V+ (’I‘, S) - {') '}T'



Non-Ultralocal Models

By introducing the fields u = 9,v and w = d2v, combining the (r, s) pair
with the V-matrix:

B 4e3* — 202 —die* v + 2ie’u — iw + 2iv3

— \die?Mv + 2ietu + iw — 2iv? —4e3* 4 2eM? ’

we can find a non-ultralocal time-like Poisson structure:

{v(t1), v(ta)}r = {ultr), u(t)}r = {v(t1), w(t2)}r = 0,
{o(t1), ute)}r = 0(t1 — t2),
{u(tr), w(ta)}r = —6078(t1 — ta),

{w(ty), w(t2)}r = 8 (t1 — t2).

and building the transfer matrix gives an equal-space Hamiltonian:

—1 T
HT:_

5 (3v* — 2vw + u?)dt.

—T



Summary and Outlook

Summary
Summary:
> No reason to give the time-coordinate special treatment in (1+1)D
models.

» Can provide a Hamiltonian/Poisson structure describing the “space
evolution” of a system.

» Time-like boundary conditions can be extracted in the same manner
as the space-like conditions.

» The equal-space approach seems to work for more complicated
models (e.g. anisotropic Landau-Lifshitz) and non-ultralocal models
(e.g. real mKdV).
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Summary and Outlook
Outlook

Potential directions:
» Does the “lattice” commute?

» Find solutions to the higher order systems. Do they have any
interesting consequences for the underlying systems?

» Implications and applications of time-like boundary conditions. Can
space-like and time-like boundary conditions be combined to study
space-time corners?

» A proper study of the anisotropic Landau-Lifshitz model or of
non-ultralocal models.
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Thank you for listening!
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