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Abstract

This thesis focusses on the development of (1+1)-dimensional integrable hierarchies

in both the classical and quantum settings via the Lax/zero-curvature picture, where

the underlying Poisson structure is found through the use of a classical or quantum

R-matrix. After setting the scene by using the non-linear Schrödinger and isotropic

Landau-Lifshitz models as examples of the standard approach to constructing hier-

archies in this picture, the focus shifts to two more recent developments: equal-space

Poisson structures (and the resulting spatially conserved quantities and Lax pairs);

and quantum Lax pairs, where previously only the quantum Lax matrix (the spa-

tial component) was considered. The non-linear Schrödinger and isotropic Landau-

Lifshitz models (or analogous quantum spin chains) are then used as examples for

these recent developments to compare against the familiar results.
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Chapter 1

Introduction

Integrable models play a fundamental role in many current topics, and some of the

simplest physical examples of such are (1+1)-dimensional models, that is, those with

one spatial coordinate x and one temporal coordinate t. Despite being labelled as

“integrable”, many of the examples of interest are very difficult or impractical to

actually integrate, so it can be useful to develop connections between such models.

Integrable hierarchies allow us to do just that, by describing a large (or even infinite

in the case of systems with a continuous space dependence) number of integrable

systems that are grouped and connected by some common object.

One method for constructing a hierarchy of integrable models is based on the

existence of a “Lax matrix” (this can more generally be a Lax operator, but we

focus in this thesis on the 2×2 matrix case), due originally to Lax [1] but later

written in the zero-curvature approach we discuss here by others [2, 3], which allows

the conserved quantities that provide the integrability, and the other integrable

systems in the hierarchy, to be systematically constructed. This Lax matrix is used

in conjunction with an R-matrix (for quantum systems, or its classical limit the

r-matrix for classical systems), which is a solution of the Yang-Baxter equation

[4, 5], (4.1.3) (or the classical Yang-Baxter equation, (2.1.6), for classical systems

[6]). Together, the Lax matrix and R-matrix encode all of the relevant information

of the integrable system.

When we talk about an integrable model, we typically mean a system of equa-

tions that govern the evolution of some fields. These fields depend on the spatial

1



Chapter 1: Introduction

coordinate (x for continuous systems and an index n for discrete systems) and the

time coordinate t. For example, one of the two main models under study in this

thesis is the non-linear Schrödinger (NLS) model1 [2]:

∂tψ = −∂2
xψ + 2ψ|ψ|2, ∂tψ̄ = ∂2

xψ̄ − 2ψ̄|ψ|2, (1.1.1)

which has two2 fields, ψ(x, t) and ψ̄(x, t). The derivative with respect to a variable

is denoted by, for example, ∂x = ∂
∂x

.

The other main model we concern ourselves with is the isotropic Landau-Lifshitz

(HM) model3 [7, 8], the equations of motion for which can be written in vector form:

∂t~S =
i

c2
~S × (∂2

x
~S), (1.1.2)

where ~S(x, t) =
(
Sx(x, t), Sy(x, t), Sz(x, t)

)T
is a vector containing the three fields

Sx(x, t), Sy(x, t), and Sz(x, t), and c is a non-zero constant, the meaning of which is

given in (2.1.11). These can also be written in terms of useful combinations of these

fields as:

∂tS± = ± 1

c2

(
S±(∂2

xSz)− (∂2
xS±)Sz

)
,

∂tSz =
1

2c2

(
(∂2
xS+)S− − S+(∂2

xS−)
)
,

(1.1.3)

with S±(x, t) = Sx(x, t)± iSy(x, t). When referencing the three fields S± and Sz, we

will use the subscript σ ∈ {+,−, z} to collectively refer to them as Sσ.

Two other important ingredients in the extraction of these equations of mo-

tion are “Poisson brackets”, {·, ·}, and the “Hamiltonian”, H. These are combined

through Hamilton’s equation to find the time-evolution of the fields in the model.

For NLS, for example, the Poisson bracket and Hamiltonian would need to be chosen

1This is usually presented with a factor of i on the left-hand side of each equation, so that the
two are the complex conjugates of each other. For simplicity, we switch to imaginary time in this
thesis so that the factors of i can be removed.

2While the ψ and ψ̄ in these equations are not the complex conjugate of one another, as the
over-bar would imply, we still retain the notation |ψ|2 = ψψ̄ to help keep the expressions compact.

3This model arises as the continuum limit of the classical analogue of the quantum XXX Heisen-
berg spin chain, which we shall discuss in Chapter 4. Due to the XXX spin chain’s simple inter-
pretation as a connected chain of magnets, it is also called the Heisenberg magnet, making the
isotropic Landau-Lifshitz model the “continuous classical Heisenberg magnet”, which is why we
refer to it by HM.

2



Chapter 1: Introduction

such that the equations of motion, (1.1.1) could be written in the form of Hamilton’s

equation:

∂tψ = {H,ψ}, ∂tψ̄ = {H, ψ̄}. (1.1.4)

In the quantum case discussed in Chapter 4 the Poisson brackets will be replaced

with commutation relations, and in the dual description of Chapter 3 the above

equations would have ∂x instead of ∂t in the left-hand side, as we are interested in

“space-evolution” there.

The Hamiltonian and Poisson bracket are of particular import, as a hallmark

of integrability is the presence of a large number of distinct conserved quantities

that Poisson commute with one another. Due to the anti-symmetry of the Poisson

bracket, {a, b} = −{b, a}, the Hamiltonian is immediately one such quantity that

is constant with respect to time. Then, part of the value of the Lax construction

is that it provides a hierarchy of conserved quantities that Poisson commute with

one another. Therefore, from the minimal input data of the Lax matrix and the

r-matrix, we are able to extract all of the commuting quantities that we need for

integrability.

A final important consideration when discussing solutions of models is that of

boundary conditions. Two4 types of boundary conditions will be discussed in this

thesis: periodic and reflective boundary conditions.

As the simpler of the two cases, periodic boundary conditions will be imposed

first in each setting, and the necessary tools for capturing what goes on at the

boundary will be introduced after the periodic examples.

The rest of the thesis is laid out as follows: Chapter 2 walks through the process

of how we classically use the tools of Lax matrices and r-matrices to determine the

conserved quantities and temporal components of the Lax pairs for an integrable

system, and how these provide us with the tower of related, yet distinct, integrable

systems, each of which admits a description in this language. This will be done for

4Despite this statement, all of the results for periodic boundary conditions will still hold in
the case of Schwartz type boundary conditions (that is, those where the fields and all of their
derivatives are assumed to vanish sufficiently quickly in the limit as x → ±∞) by simply taking
the limit as the length of the system goes to infinity.

3



Chapter 1: Introduction

both continuous (Sections 2.1-2.3) and discrete (Sections 2.4-2.6) models, both with

periodic (Sections 2.2 and 2.5) and with reflective (Sections 2.3 and 2.6) boundary

conditions. Examples of these results are provided in the continuous case for the

NLS and HM models (which are fully introduced in this language in Section 2.1)

and in the discrete case by the Ablowitz-Ladik model (which is a discretisation of

the NLS model, and is introduced in Section 2.4). The results shown here are drawn

from a selection of sources, with the primary reference being [9].

The next chapter, Chapter 3, is built from the papers [10] and [11] and builds

the dual (equal-space5) construction of integrable models which was introduced in

[12] and [13]. In this picture we describe models in terms of their space-evolution

rather than the usual time-evolution, which leads to, for example, spatially conserved

“Hamiltonians”. The dual Poisson structure is introduced6 in Section 3.1, and

Section 3.2 generates the dual Hamiltonians and Lax pairs in the periodic case.

Section 3.3 then investigates how we can use these to build a “lattice” in place of

the usual hierarchy picture (although note, that the “lattice” does not necessarily

commute). Finally, Section 3.4 introduces the idea of time-like boundary conditions

in analogy to the space-like boundary conditions discussed in Chapter 2. The NLS

and HM models are again used as examples throughout this chapter.

The penultimate chapter changes focus to instead study quantum spin chains,

introducing the auxiliary linear problem to the quantum setting through the def-

inition of the full quantum Lax pair. This chapter follows the work done in [14],

but with additional examples using the Heisenberg XXX spin chain (as well as the

quantum Ablowitz-Ladik model used in [14]). This brings the topic of quantum spin

chains into closer comparison to classical discrete systems, as detailed in the latter

half of Chapter 2.

Finally, we summarise the key points and make some closing remarks in the final

chapter, Chapter 5.

5This “equal-space” should be contrasted against the name “equal-time” for the standard pic-
ture described in Chapter 2. These names are in reference to the evolution variable, as they describe
the coordinate that we are evolving along. I.e. stopping the evolution at some point would give
us a space-time slice that has constant time (for equal-time/time-evolution) or constant space (for
equal-space/space-evolution).

6Appendix A goes into some further properties of this dual Poisson structure and some of its
consequences. Some more general results are also provided.
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Chapter 2

Standard Hierarchies

To allow the later chapters to build on a common basis with consistent notation,

this first chapter is devoted to introducing the models and tools that will be used

throughout. It will also showcase how these are used to derive the quantities of

interest so that the processes and results can be compared and contrasted with the

appropriate analogues in the other chapters. We start by focussing on continuous

integrable models, before turning to discrete models starting from Section 2.4.

For more details and references on this general construction, see [9] and [15].

2.1 Continuous Systems

2.1.1 The Equations of Interest

For both the NLS and HM models, we will use a dot to denote the derivative with

respect to a time flow1 tk, e.g. Ṡσ = ∂tkSσ, and similarly use a prime to denote the

derivative with respect to a space flow xk, e.g. S ′σ = ∂xkSσ. Where there is likely

ambiguity however, we will explicitly use either ∂tk or ∂xk .

Both the NLS model [9, 16] and HM model [7, 8] can be written as the compat-

ibility condition of the auxiliary linear problem:

Ψ′ ≡ ∂xΨ = UΨ, Ψ̇ ≡ ∂tΨ = VΨ, (2.1.1)

1These distinct time flows will arise from considering the tower of conserved quantities that
define the system as integrable, and treating each of the quantities as the Hamiltonian for a
distinct integrable system, describing the evolution of the fields along the associated time flow
tk. When we consider the dual picture in Chapter 3, we will likewise have a hierarchy of dual
Hamiltonians that govern the space-evolution of the fields along a tower of space flows xk.

5



Chapter 2: Standard Hierarchies

where Ψ is an arbitrary vector field, and the 2×2 matrices U and V , depending on

the fields in the system and some free complex parameter λ, comprise the Lax pair

[1, 2, 3] for the system. For the NLS model, these are [15]:

U (NLS) =

 λ
2

ψ̄

ψ −λ
2

 , V (NLS) =

λ2

2
− |ψ|2 λψ̄ + ψ̄′

λψ − ψ′ −λ2

2
+ |ψ|2

 , (2.1.2)

while for the HM model, these are [8]:

U (HM) =
1

2λ
S, V (HM) =

1

2λ2
S − 1

2c2λ
S ′S, (2.1.3)

where:

S =

Sz S−

S+ −Sz

 . (2.1.4)

Cross-differentiating the auxiliary linear problem gives rise to the following compat-

ibility condition (called the zero-curvature condition) between the matrices of the

Lax pair:

0 = U̇ − V ′ + [U, V ], (2.1.5)

such that when the matrices U and V are inserted into this, and the resulting

equations are split about powers of λ, the appropriate equations of motion ((1.1.1)

for (2.1.2) and (1.1.3) for (2.1.3)) are returned.

2.1.2 Poisson Brackets

The core objects in the Hamiltonian/r-matrix construction of integrable systems are

the spatial component of the Lax pair, U , and an associated r-matrix that satisfies

the classical Yang-Baxter equation [6]:

0 = [rab(λ− µ), rac(λ)] + [rab(λ− µ), rbc(µ)] + [rac(λ), rbc(µ)], (2.1.6)

where λ, µ ∈ C are some free parameters and the subscripts denote which vector

spaces the matrices act on (e.g. rab = r⊗ I and rbc = I⊗r, with r : V ⊗V → V ⊗V ,

so that the whole equation acts on Va ⊗ Vb ⊗ Vc, where the subscripts attached to

6



Chapter 2: Standard Hierarchies

the vector spaces are merely used to denote which index corresponds to them, e.g.

rab would act only on the first two). Both the NLS and HM models share the same

core r-matrix, but differ2 by a factor of 2:

r(NLS)(λ) = 2r(HM)(λ) =
1

λ


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (2.1.7)

These r-matrices are connected to the U -matrices and the defining equations for

the system through the linear algebraic relation3 [17]:

{Ua(x, λ), Ub(y, µ)}S = [rab(λ− µ), Ua(x, λ) + Ub(y, µ)] δ(x− y), (2.1.8)

which provides an ultra-local Poisson bracket between the fields. Inserting the U -

matrices from (2.1.2) and (2.1.3) along with their respective r-matrices into this

relation, we arrive at the Poisson brackets between the fields in each of the systems.

For the NLS model, these are:

{ψ(x), ψ̄(y)}S = δ(x− y), (2.1.9)

while for the HM model, we find the sl2 exchange relations:

{S±(x), Sz(y)}S = ±S± δ(x− y), {S+(x), S−(y)}S = −2Sz δ(x− y).

(2.1.10)

The HM Poisson brackets accept a Casimir element, which manifests as a restriction

of the vector ~S to the surface of the sphere of radius c, where we have labelled the

Casimir c2:

c2 = S2
z + S+S− = S2

x + S2
y + S2

z . (2.1.11)

2Of course, any constant scalar factors can be removed by either scaling the Lax matrix or
Hamiltonian, which leaves the equations of motion invariant. We choose to keep this extra factor,
however, to keep the Lax pair and Hamiltonian consistent with the standard results.

3The subscript S is used here and in what follows to denote that we are building this system out
of the Spatial component of the Lax pair (U). This will be important later when we construct the
dual model out of the Temporal component of the Lax pair (V ), where we will use a T subscript.

7



Chapter 2: Standard Hierarchies

2.2 Continuous Periodic Boundary Conditions

2.2.1 Conserved Quantities

In order to find conserved quantities that commute with respect to this Poisson

bracket, we start by considering the (spatial) transport matrix, which is a path-

ordered exponential solution to the spatial component of the auxiliary linear problem

(2.1.1) in place of Ψ:

TS(x, y;λ) = P exp

∫ x

y

U(ξ)dξ. (2.2.1)

For a periodic system on the interval [−L,L], i.e. where ψ(L) = ψ(−L) and Sσ(L) =

Sσ(−L), the full monodromy matrix is TS(λ) = TS(L,−L;λ). Due to the U -matrices

satisfying the linear algebraic relation, (2.1.8), the monodromy matrix can be seen

to satisfy a quadratic algebraic relation [18, 19]:

{TS,a(λ), TS,b(µ)}S = [rab(λ− µ), TS,a(λ)TS,b(µ)]. (2.2.2)

Consequently, if we define a new object, called the transfer matrix tS(λ), as the

trace of the monodromy matrix:

tS(λ) = tr {TS(λ)} , (2.2.3)

then this can be shown to Poisson commute with itself for different values of the

spectral parameter (see, for example, [9]). Because of this, if we expand tS as a formal

power series in λ, tS =
∑

k λ
kt

(k)
S , then these coefficients also Poisson commute:

{t(k)
S , t

(j)
S }S = 0. (2.2.4)

As such, the terms in this expansion t
(k)
S can be seen as Hamiltonians4 governing the

evolution of the system along distinct time flows tk. Further to this, the evolution

along each time flow tk will be integrable à la Liouville, as the t
(j)
S with j 6= k will

provide the infinite tower of conserved quantities.

4Although note that, as will be discussed below, these are non-local quantities, where we would
rather have local Hamiltonians. This will be accounted for shortly.

8



Chapter 2: Standard Hierarchies

The task is therefore to find the expansion of tS(λ) in some limit of λ. For

the NLS Lax pair, (2.1.2), the appropriate limit is λ → ∞, while for the HM Lax

pair, (2.1.3), it is instead λ → 0+. In order to avoid evaluating the path-ordered

exponential, we consider a diagonalisation of the transport matrix [9]:

TS(x, y;λ) =
(
I +WS(x;λ)

)
eZS(x,y;λ)

(
I +WS(y;λ)

)−1
, (2.2.5)

where WS and ZS are wholly anti-diagonal and diagonal matrices, respectively. If

we insert this diagonalisation into the spatial half of the auxiliary linear problem,

the diagonal and anti-diagonal components can be separated into two relations:

Z ′S = UD + UAWS,

0 = W ′
S + [WS, UD] +WSUAWS − UA,

(2.2.6)

where UD and UA are the diagonal and anti-diagonal components of the U -matrix,

respectively. We now expand WS and ZS in powers of λ, with coefficients W
(k)
S and

Z
(k)
S [9]. For the NLS model, these expansions will be:

WS(λ) =
∞∑
k=0

λ−kW
(k)
S , ZS(λ) =

∞∑
k=−1

λ−kZ
(k)
S , (2.2.7)

while for the HM model these expansions will swap λ−1 → λ. Using these, we can

split (2.2.6) into a series of recurrence relations which we can recursively solve to

find ever higher coefficients in the series expansions of WS and ZS. For the NLS

model, the first few terms in the ZS-series are relatively simple:

Z
(NLS,−1)
S = L

1 0

0 −1

 ,

Z
(NLS,0)
S = 0,

Z
(NLS,1)
S =

∫ L

−L
|ψ|2

1 0

0 −1

 dx,

(2.2.8)

9
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although the terms that follow them grow increasingly complicated:

Z
(NLS,2)
S =

∫ L

−L

−ψ′ψ̄ 0

0 ψψ̄′

 dx,

Z
(NLS,3)
S =

∫ L

−L

ψ′′ψ̄ − |ψ|4 0

0 |ψ|4 − ψψ̄′′

 dx,

Z
(NLS,4)
S =

∫ L

−L

ψψ̄′ + 4ψ′ψ̄ − ψ′′′ψ̄ 0

0 ψ′ψ̄ + 4ψψ̄′ − ψψ̄′′′

 dx,

(2.2.9)

while for the HM model, they are:

Z
(HM,−1)
S = cL

1 0

0 −1

 ,

Z
(HM,0)
S =

1

4c

∫ L

−L

S+S
′
− − S ′+S−
c+ Sz

1 0

0 −1

 dx,

Z
(HM,1)
S =

−1

4c3

∫ L

−L

(
S ′+S

′
− + (S ′z)

2
)1 0

0 −1

 dx.

(2.2.10)

The reason for doing this is that if we insert the decomposition of the monodromy

matrix, (2.2.5), into the definition of the transfer matrix, (2.2.3), we can use the

cyclic property of the trace and the periodicity of the system we are considering to

cancel the explicit W dependence, leaving:

tS(λ) = tr
{

eZS(λ)
}

= eZ11,S(λ) + eZ22,S(λ).

(2.2.11)

As any combination of conserved commuting quantities will also be a conserved

commuting quantity, it is useful to instead consider the expansion of the logarithm

of the transfer matrix, GS(λ) = ln (tS(λ)), as this acts to remove the non-locality of

10
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the conserved quantities. The expansion of this logarithmic generator is then:

G(NLS)
S (λ) = ln

(
eλZ

(NLS,−1)
11,S +Z

(NLS,0)
11,S +... + eλZ

(NLS,−1)
22,S +Z

(NLS,0)
22,S +...

)
,

G(HM)
S (λ) = ln

(
eλ

−1Z
(HM,−1)
11,S +Z

(HM,0)
11,S +... + eλ

−1Z
(HM,−1)
22,S +Z

(HM,0)
22,S +...

)
.

(2.2.12)

The leading order contribution Z
(−1)
S from both the NLS Z-matrices, (2.2.8), and

the HM Z-matrices, (2.2.10), are such that when the appropriate λ limit is taken,

the (1, 1)-component will approach +∞ while the (2, 2)-component will approach

−∞. Consequently, the exponential of the (1, 1)-components will dominate in these

limits, so that the expansion of GS(λ) is:

G(NLS)
S (λ) = λZ

(NLS,−1)
11,S + Z

(NLS,0)
11,S + λ−1Z

(NLS,1)
11,S + ...,

G(HM)
S (λ) = λ−1Z

(HM,−1)
11,S + Z

(HM,0)
11,S + λZ

(HM,1)
11,S + ....

(2.2.13)

For the NLS model, we can combine this with the Z-series, (2.2.8) and (2.2.9), to

find the first six conserved quantities:

G(NLS,−1)
S = L,

G(NLS,0)
S = 0,

G(NLS,1)
S =

∫ L

−L
|ψ|2dx,

G(NLS,2)
S = −

∫ L

−L
ψ′ψ̄dx,

G(NLS,3)
S =

∫ L

−L

(
ψ′′ψ̄ − |ψ|4

)
dx,

G(NLS,4)
S =

∫ L

−L

(
ψψ̄′ + 4ψ′ψ̄ − ψ′′′ψ̄

)
dx,

(2.2.14)

a few of which are known to have direct physical interpretations: G(NLS,1)
S is the total

density of the system, G(NLS,2)
S is the total momentum of the system, G(NLS,3)

S is the

Hamiltonian for the NLS model, and G(NLS,4)
S is the Hamiltonian for the complex

11
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modified Korteweg-de Vries (cmKdV) model:

N
(NLS)
S = G(NLS,1)

S , P
(NLS)
S = G(NLS,2)

S ,

H
(NLS)
S = G(NLS,3)

S , H
(cmKdV)
S = G(NLS,4)

S .

(2.2.15)

For the HM model, the GS expansion causes (2.2.10) to supply us with the first three

conserved quantities:

G(HM,−1)
S = cL,

G(HM,0)
S =

1

4c

∫ L

−L

S+S
′
− − S ′+S−
c+ Sz

dx,

G(HM,1)
S =

−1

4c3

∫ L

−L

(
S ′+S

′
− + (S ′z)

2
)
dx,

(2.2.16)

the second and third of which can be recognised as the total momentum and Hamil-

tonian for the HM model, respectively (up to a factor of −2c) [9]:

P
(HM)
S = −2cG(HM,0)

S , H
(HM)
S = −2cG(HM,1)

S . (2.2.17)

2.2.2 V -Matrices

Each of the conserved quantities G(k)
S generated through the expansion of GS can be

seen to describe the evolution of the system along a distinct time flow tk, so that

the equations of motion for each of these systems would be given by:

∂tkf = {G(k)
S , f}S, (2.2.18)

where f is a field of the model under study (e.g. f = ψ or f = ψ̄ for NLS). Conse-

quently, each of these systems should have some associated Lax pair. As we use the

U -matrix to generate the conserved quantities we will be looking for a generator V

that produces the V -matrices V (k) associated to each time flow tk. We do so by first

12



Chapter 2: Standard Hierarchies

equating Hamilton’s equation (as applied to U) and the zero-curvature condition:

V′b(λ, µ)− [Ub(λ),Vb(λ, µ)] = ∂t̄Ub(λ) =
{

ln tra{TS,a(µ)}, Ub(λ)
}
S

= t−1
S (µ)tra{TS,a(µ), Ub(λ)}S,

(2.2.19)

where the t̄ is used to denote some master time flow and the vector space subscripts

are introduced to distinguish the space being traced over (the a vector space). Using

the algebraic relations (2.1.8) and (2.2.2), we can extract from this the generator of

the V -matrices associated to each time flow tk, [6]:

Vb(x;λ, µ) = t−1
S (µ) tra {TS,a(L, x;µ)rab(µ− λ)TS,a(x,−L;µ)} , (2.2.20)

such that the V -matrix associated to the tk time flow appears as the coefficient of

µ−k (for the NLS model) or µk (for the HM model) in the series expansion of this

about µ. Using the diagonalisation of the monodromy matrix, the suitable limit of

µ in Z(µ), and the cyclic properties of the trace, this can be simplified to:

Vb(x;λ, µ) = tra

{
rab(µ− λ)

(
I +WS,a(x;µ)

)
e11,a

(
I +WS,a(x;µ)

)−1
}
, (2.2.21)

where eij is the 2×2 matrix that obeys (eij)kl = δikδjl. Finally, as the chosen r-matrix

satisfies the property rabMa = Mbrab for any 2×2 matrix M , this can be simplified

further to lie solely in the b vector space (so that we may drop the subscripts):

V(NLS)(x;λ, µ) = 2V(HM)(x;λ, µ) =
1

µ− λ
(
I +WS(x;µ)

)
e11

(
I +WS(x;µ)

)−1
.

(2.2.22)

Using the W -matrices found by inserting the NLS U -matrix into (2.2.6), the

limit λ → ∞ supplies the V -matrices corresponding to the conserved quantities

stated in (2.2.14). As a trivial Hamiltonian will provide trivial equations of motion,

the V -matrices corresponding to any trivial conserved quantities will themselves be

trivial. Consequently, the series of V -matrices for the NLS model starts at order 1:

V(NLS,1) =

1 0

0 0

 , (2.2.23)

13
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and continues to higher orders:

V(NLS,2) =

λ ψ̄

ψ 0

 ,

V(NLS,3) =

λ2 − |ψ|2 λψ̄ + ψ̄′

λψ − ψ′ |ψ|2

 ,

V(NLS,4) =

 λ3 − λ|ψ|2 + (ψ′ψ̄ − ψψ̄′) λ2ψ̄ + λψ̄′ + (ψ̄′′ − 2ψ̄|ψ|2)

λ2ψ − λψ′ + (ψ′′ − 2ψ|ψ|2) λ|ψ|2 − (ψ′ψ̄ − ψψ̄′)

 .

(2.2.24)

The V -matrix presented in the original NLS Lax pair, (2.1.2), is then recognised as

the third-order term, up to a shifting by some constant factor:

V (NLS) = V(NLS,3) − λ2

2
I. (2.2.25)

If we instead use the HM U -matrix in (2.2.6), and expand (2.2.22) in the limit

µ→ 0+, the first three terms are:

V(HM,0) =
−1

4λ
I− 1

4cλ
S,

V(HM,1) =
−1

4λ2
I− 1

4cλ2
S +

1

4c3λ
S ′S,

V(HM,2) =
−1

4λ3
I− 1

4cλ3
S +

1

4c3λ2
S ′S − 1

4c3λ
S ′′ − 3

8c5λ
(S ′)2S.

(2.2.26)

After removing the overall commuting constant factors and scaling by −2c, the

second of these can be identified as the V -matrix in the original HM Lax pair

(2.1.3):

V (HM) = −2c(V(HM,1) +
1

4λ2
I). (2.2.27)

It is the identifications of U (NLS) with V(NLS,2) and U (HM) with V(HM,0) (up to some

constant factors), that suggest the introduction of dual pictures for these models,

with the roles of time and space switched. This is addressed in Chapter 3. Before

we do that though, we discuss the changes that need to be made to this construction

14
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to account for having non-periodic boundary conditions, as well as how this picture

fits to models with discrete space dependence.

2.3 Continuous Open Boundary Conditions

2.3.1 Conserved Quantities

In order to study systems with open boundary conditions, we need to introduce some

K±-matrices that are associated to the ±L boundaries, and have a dependence on

some boundary fields and an additional spectral parameter. In order for them to

be used in generating conserved quantities, we require that they satisfy the classical

analogue of the (static) quantum reflection equation [20, 21]:

0 = K±,a(λ)rab(λ+ µ)K±,b(µ)−K±,b(µ)rab(λ+ µ)K±,a(λ)

+ [rab(λ− µ), K±,a(λ)K±,b(µ)].

(2.3.1)

For our choices of r-matrix, (2.1.7), the most general choice of K±-matrix (up to

some rescaling and gauge transformations) is [22]:

K
(NLS)
± (λ) = K

(HM)
± (λ) = α±I + λ

δ± β±

γ± −δ±

 , (2.3.2)

where α±, β±, γ±, and δ± are some constants that describe the boundary conditions

being considered5. In this thesis we only consider the non-dynamical case where

the constants have no time dependence6 (and when we move on to discuss time-like

boundary conditions, we shall assume that the equivalent constants have no space

dependence).

These K±-matrices are introduced into the transfer matrix tS as [20]:

t̄S(λ) = tr
{
K+(λ)TS(L,−L;λ)K−(λ)T−1

S (L,−L;−λ)
}
, (2.3.3)

5The reflection equations satisfied by K+ and K− actually differ by a minus sign in the spectral
parameter, but this factor can be absorbed into the β+, γ+, and δ+ so that the boundary matrices
both take the same form.

6Introducing a time-dependence into the K-matrix would result in a Poisson bracket between
the K-matrices on the left-hand side of (2.3.1), in the manner of (2.1.8) or (2.2.2).
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and from this definition it follows that:

{̄tS(λ), t̄S(µ)}S = 0. (2.3.4)

Much as in the periodic case, we will consider the generator ḠS(λ) = ln (̄tS(λ)),

as this will supply us with the known Hamiltonian. When we diagonalise the T−1
S ,

we use:

T−1
S (x, y;−λ) =

(
I +WS(y;−λ)

)
e−ZS(x,y;−λ)

(
I +WS(x;−λ)

)−1
, (2.3.5)

instead of (2.2.5). Consequently, as the highest order term in ZS is λ for the NLS

model and λ−1 for the HM model, the effect of the − sign outside of the ZS and

the change in sign of the λ will cancel out, so that the appropriate limit of the

exponential term will be:

e−Z
(NLS)
S (x,y;−λ) → e−Z

(NLS)
11,S (x,y;−λ)e11 +O(e−λ

−1

),

e−Z
(HM)
S (x,y;−λ) → e−Z

(HM)
11,S (x,y;−λ)e11 +O(e−λ).

(2.3.6)

Consequently, the expansion of the generator ḠS will be:

ḠS(λ) = Z11,S(λ)− Z11,S(−λ) + ln
([(

I +WS(L;−λ)
)−1

K+(λ)
(
I +WS(L;λ)

)]
11

)
+ ln

([(
I +WS(−L;λ)

)−1
K−(λ)

(
I +WS(−L;−λ)

)]
11

)
,

(2.3.7)

where the [...]ij indicates that we are only considering the ijth component of the

matrix inside the brackets. Due to the Z11,S(λ) − Z11,S(−λ) comprising the bulk

Hamiltonian, it immediately follows that all of the conserved quantities that ap-

peared at even order in (2.2.14) (namely, G(NLS,2)
S and G(NLS,4)

S ) and (2.2.16) (namely,

G(HM,0)
S ) will be 0. The remaining non-trivial NLS conserved quantities from (2.2.14)
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are given by [23]:

Ḡ(NLS,1)
S = 2

∫ L

−L
|ψ|2dx+

1

δ+

(
α+ + β+ψ − γ+ψ̄

)∣∣
x=L

+
1

δ−

(
α− − β−ψ + γ−ψ̄

)∣∣
x=−L ,

Ḡ(NLS,3)
S = 2

∫ L

−L

(
ψ′′ψ̄ − |ψ|4

)
dx+ B+(L)− B−(−L),

(2.3.8)

where:

B± = −2ψ̄ψ′ +
1

δ±

(
β±(ψ′′ − 2ψ|ψ|2)− γ±(ψ̄′′ − 2ψ̄|ψ|2)∓ 2α±|ψ|2

)
+

1

3δ2
±

(
β±ψ − γ±ψ̄ ± α±

)(
β±ψ − γ±ψ̄

)′
,

(2.3.9)

while the remaining non-trivial HM conserved quantity from (2.2.16) is [24]:

Ḡ(HM,1)
S =

−1

2c3

∫ L

−L

(
S ′+S

′
− + (S ′z)

2
)

dx+
1

2α+c

[
2δ+Sz + β+S+ + γ+S−

]
x=+L

+
1

2α−c

[
2δ−Sz + β−S+ + γ−S−

]
x=−L.

(2.3.10)

These remaining conserved quantities can be recognised as G(NLS,1)
S and G(NLS,3)

S from

(2.2.14) and G(HM,1)
S from (2.2.16), up to boundary contributions and an overall

factor of 2. As G(NLS,2)
S and G(HM,0)

S were associated to the total momentums of their

respective systems, and are trivial in this setting, we can infer that the momentum

is no longer conserved in either model when boundary conditions are introduced.

2.3.2 V -Matrices

By following an analogous derivation to that of (2.2.20), we can derive the generator

of the V -matrices corresponding to the conserved quantities generated by ḠS. There

are three cases to consider in this setting [25], corresponding to the V -matrices in

the bulk (labelled V̄B), and the V -matrices lying at each of the two boundaries

(labelled V̄± for the x = ±L boundaries). The generator of the bulk V -matrices is
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(the parameter dependence on the left-hand side is suppressed for compactness):

V̄B,b = t̄−1
S (µ)tra

{
K+,a(µ)TS,a(L, x;µ)rab(µ− λ)TS,a(x,−L;µ)K−,a(µ)T−1

S,a(−µ)

+ K+,a(µ)TS,a(µ)K−,a(µ)T−1
S,a(x,−L;−µ)rab(µ+ λ)T−1

S,a(L, x;−µ)
}
,

(2.3.11)

while the generator of the V -matrices at the positive boundary is:

V̄+,b(λ, µ) = t̄−1
S (µ)tra

{
K−,a(µ)T−1

S,a(−µ)K+,a(µ)rab(µ− λ)TS,a(µ)

+K−,a(µ)T−1
S,a(−µ)rab(µ+ λ)K+,a(µ)TS,a(µ)

}
,

(2.3.12)

and the generator of the V -matrices at the negative boundary is:

V̄−,b(λ, µ) = t̄−1
S (µ)tra

{
K+,a(µ)TS,a(µ)rab(µ− λ)K−,a(µ)T−1

S,a(−µ)

+K+,a(µ)TS,a(µ)K−,a(µ)rab(µ+ λ)T−1
S,a(−µ)

}
.

(2.3.13)

If we expand these three generators in the appropriate limit of µ, the even ordered

terms are all trivial (V(NLS,2) and V(NLS,4) in (2.2.24) and V(HM,0) and V(HM,2) in

(2.2.26)), corresponding to how the Ḡ(even)
S were constant. In the limit as µ→∞ of

the generator of the NLS V -matrices, the remaining non-trivial terms from (2.2.24)

are the order µ3 matrix (which is the one we are interested in), where we define

ξ± = β±ψ − γ±ψ̄, split here into its bulk and boundary contributions:

V̄(NLS,3)
B (x;λ) = 2

λ2 − |ψ|2 λψ̄ + ψ̄′

λψ − ψ′ |ψ|2

 ,

V̄(NLS,3)
± (λ) = 2

λ2 − |ψ|2 λψ̄

λψ |ψ|2

+
1

δ3
±

(
(α± ± ξ±)2 ± ξ′±

) 0 β±

γ± 0



± 1

δ2
±

(α± ± ξ±)

 ξ± −λβ±
λγ± −ξ±

± 1

δ2
±
ξ′±

1 0

0 0


(2.3.14)

− 1

δ±

 β±ψ + γ±ψ̄ + ξ′± −λ2β± + 2β±|ψ|2 ± 2α±ψ̄

−λ2γ± + 2γ±|ψ|2 ∓ 2α±ψ −(β±ψ + γ±ψ̄ + ξ′±)

 ,
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and the order µ1 matrix (also split into bulk and boundary terms):

V̄(NLS,1)
B (x;λ) =

2 0

0 0

 ,

V̄(NLS,1)
± (λ) =

1

δ±

 0 β±

γ± 0

+

2 0

0 0

 .

(2.3.15)

When the HM model is considered instead, the limit as µ→ 0+ of these generators

gives the only non-trivial term up to order µ2 (to match with (2.2.26)) as:

V̄(HM,1)
B (x;λ) =

−1

2λ2
I− 1

2cλ2
S +

1

2c3λ
S ′S, (2.3.16)

V̄(HM,1)
± (λ) =

−1

2λ2
I− 1

2cλ2
S ± 1

4α±cλ

 β±S+ − γ±S− 2(δ±S− − β±Sz)

2(γ±Sz − δ±S+) γ±S− − β±S+

 .

In order to extract the boundary conditions from the open Hamiltonian, we

simply calculate the equations of motion as usual (through the Poisson brackets and

Hamilton’s equation), except gathering all of the boundary terms that arise (either

from the integration of total derivatives in the bulk Hamiltonian, or from the Poisson

bracket of the fields with the boundary Hamiltonians). We then impose the sewing

conditions that the equations of motion away from the boundary smoothly transition

to those at the boundary, i.e. that limx→±L ψ̇(x) = ψ̇(±L) and limx→±L
˙̄ψ(x) =

˙̄ψ(±L) for the NLS model and that limx→±L Ṡσ(x) = Ṡσ(±L) for the HM model.

Similarly, in order to extract the boundary conditions from the V -matrices, the

condition that the equations of motion agree at the boundary manifests as the

condition that limx→±L V̄B,b = V̄±,b. Performing either of these limits yields the

same constraints on the fields, so they can be used as a consistency check for one

another. The boundary conditions that arise (through either of these methods) for

the NLS model are [23]:

β± = γ± = 0, ψ′(±L) = ∓α±
δ±
ψ, ψ̄′(±L) = ∓α±

δ±
ψ̄, (2.3.17)
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while the conditions on the Sσ in the HM model are [24]:

[
S+S

′
− − S ′+S−

]
x=±L = ± c2

α±

[
β±S+ − γ±S−

]
x=±L,

[
S+S

′
z − S ′+Sz

]
x=±L = ± c2

α±

[
δ±S+ − γ±Sz

]
x=±L,

[
S−S

′
z − S ′−Sz

]
x=±L = ± c2

α±

[
δ±S− − β±Sz

]
x=±L.

(2.3.18)

2.4 Discrete Systems

2.4.1 The Equations of Interest

One of the key results covered in this thesis is the construction of the auxiliary

linear problem in the quantum spin chain setting in Chapter 4, with a suitable

generator of the temporal components of the Lax pair. Consequently, we briefly

cover the known results for classical semi-discrete systems. In Chapter 4 we discuss

the Heisenberg XXX spin chain and the quantum Ablowitz-Ladik model [26], which

are discrete quantum versions of the non-linear Schrödinger and isotropic Landau-

Lifshitz equations covered in Section 2.1. To connect these two pictures, we use

the classical Ablowitz-Ladik (AL) model [27] to demonstrate the key points of this

section7.

The AL model is governed by the evolution equations [27]:

∂tψn = 2ψn − ψn+1 − ψn−1 + |ψn|2(ψn+1 + ψn−1),

∂tψ̄n = −2ψ̄n + ψ̄n+1 + ψ̄n−1 − |ψn|2(ψ̄n+1 + ψ̄n−1),

(2.4.1)

which, in the limit ψn → ∆ψ(∆n) and t → ∆2t, yield the continuous non-linear

Schrödinger equations (1.1.1).

7The discrete isotropic Landau-Lifshitz equation is not discussed here due to requiring a se-
lection of tricks that are needed for none of the continuous (Section 2.1), dual (Chapter 3), or
quantum (Chapter 4) constructions, so doesn’t serve as a useful connection.
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Just as in the continuous case, these equations arise as the compatibility con-

dition of a pair of equations, a discrete analogue of the auxiliary linear problem,

(2.1.1), which is also called the auxiliary linear problem (the context in which they

are referenced will be sufficient to determine whether the continuous or discrete

version is being considered):

Ψn+1 = LnΨn, Ψ̇n ≡ ∂tΨn = AnΨn. (2.4.2)

The matrices (Ln, An) are called the discrete Lax pair8 for an integrable system

if the equations of motion for that system arise as the compatibility condition of

(2.4.2):

L̇n = An+1Ln − LnAn. (2.4.3)

The Lax pair for the AL model is [26]:

L(AL)
n = Nn

eλ ψ̄n

ψn e−λ

 , (2.4.4)

A(AL)
n =

e2λ + ψnψ̄n−1 − 2ψ̄nψn−1 − 1 eλψ̄n − e−λψ̄n−1

eλψn−1 − e−λψn −e−2λ + 2ψnψ̄n−1 − ψ̄nψn−1 + 1

 ,

where Nn = (1−|ψn|2). In the same continuous limit as for the equations of motion,

as well as with λ→ ∆λ, this converts into the continuous Lax pair, (2.1.2).

2.4.2 Poisson Brackets

Like in the continuous case, we extract the Poisson brackets for the system from

a particular combination of the spatial component of the Lax pair, Ln, and an

associated r-matrix (which still needs to be a solution of the classical Yang-Baxter

equation, (2.1.6)). The specific relation between the two is [17]:

{La,n(λ), Lb,m(µ)} = [rab(λ− µ), La,n(λ)Lb,n(µ)] δnm, (2.4.5)

8As with the auxiliary linear problem, whether the discrete or continuous Lax pair is being
referred to when the generic name “Lax pair” is used will be clear from context.
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where δnm is the Kronecker delta function9. Note that this has the same form as

the Poisson bracket between the continuous monodromy matrices in (2.2.2), which

shall still be true when we consider the discrete monodromy matrices, (2.5.2). In

the continuum limit this reverts back to its continuous analogue (2.1.8), as detailed

in [28, 29].

The r-matrix of the AL model takes a different form to the r-matrix for the NLS

model. Instead of (2.1.7), we have:

r(AL)(λ) =
−1

eλ − e−λ


eλ + e−λ 0 0 0

0 3e−λ −1 0

0 −1 3eλ 0

0 0 0 eλ + e−λ

 . (2.4.6)

In the continuum limit used for the Lax pair, λ→ ∆λ, this reverts to the r-matrix

used for the continuous NLS model, (2.1.7), up to some additive commuting factor.

Inserting the AL Lax matrix and r-matrix into (2.4.5), we find the Poisson

brackets between the fields in this model:

{ψn, ψ̄m} = (1− |ψn|2)δnm. (2.4.7)

2.5 Discrete Periodic Boundary Conditions

2.5.1 Conserved Quantities

As with the continuous case, we start by defining the transport matrix T as a

solution of the spatial component of the auxiliary linear problem, (2.4.2), in place

of Ψn:

T (n,m;λ) = Ln(λ)...Lm(λ), (2.5.1)

and for a system lying on the discrete interval {1, ..., N}, we call the transport

9Because the equal-space construction is only valid in the continuous case (as in the discrete
case the dual picture would be considering some discrete space-evolution, and the idea of a Poisson
structure (which the dual picture is built upon) does not exist in this setting), we do not need the

S subscript on the Poisson bracket.
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matrix that covers the whole interval the monodromy matrix T (λ) = T (N, 1;λ).

Due to both the commutator and the Poisson bracket obeying the Leibniz rule, it

immediately follows that if Ln satisfies (2.4.5), then the monodromy matrix satisfies:

{Ta(λ), Tb(µ)} = [rab(λ− µ), Ta(λ)Tb(µ)]. (2.5.2)

For a periodic system (LN+1 = L1) the trace of the monodromy matrix (called

the transfer matrix), t(λ) = tr {T (λ)}, Poisson commutes with itself for any choice

of spectral parameters, {t(λ), t(µ)} = 0. Therefore, if the transfer matrix t(λ) is

written as a power series in λ, the coefficients at different orders will also Poisson

commute with one another:

{t(k), t(j)} = 0, (2.5.3)

where the coefficient of λk is labelled t(k).

If Ln(λ) contains l different λ dependencies (for example, the AL Lax matrix

(2.4.4) contains three, eλ, e−λ, and λ0), then the expansion of the monodromy

matrix defined through the product (2.5.1) will contain
(
(l − 1)N + 1

)
terms (e.g.

the expansion of the AL monodromy matrix will contain (2N +1) terms, everything

from e−Nλ through to eNλ). Then, because the Liouville-Arnold theorem defines a

system with a finite number of degrees of freedom 2N as integrable if it has at least

N Poisson commuting integrals of motion, and the expansion of the monodromy

matrix provides
(
(l− 1)N + 1

)
Poisson commuting quantities, we see the first hints

of integrability (as each site along the spatial axis will provide two degrees of freedom,

and assuming that the Lax matrix has a non-trivialisable λ dependence).

By considering the time derivative of t, it is straightforward to see that it is

constant:

ṫ = tr
{
Ṫ
}

= tr

{
N∑
n=1

LN ...Ln+1L̇nLn−1...L1

}

=
N∑
n=1

tr {LN ...Ln+1An+1LnLn−1...L1 − LN ...Ln+1LnAnLn−1...L1} ,

(2.5.4)
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and by using the periodicity of the system under consideration to shift the summed

index in one of the terms, this cancels out. Consequently, t is a generator of Poisson

commuting conserved quantities, providing the integrability of the system.

Unlike in the continuous case (and much for the better), the expansion of the

transfer matrix can be explicitly calculated with relative ease, as it is merely a

product of matrices, although we will once again be interested in the conserved

quantities generated by the logarithm of the transfer matrix G(λ) = ln (t(λ)).

Example: Ablowitz-Ladik

The two ends of the expansion of the monodromy matrix built from the AL Lax

matrix, (2.4.4), will be at order e−Nλ and eNλ:

T (AL) = NN ...N1

e−Nλ

0 0

0 1

+ e(1−N)λ

 0 ψ̄N

ψ1 0

+ e(2−N)λT (AL,2−N) + ...

+e(N−2)λT (AL,N−2) + e(N−1)λ

 0 ψ̄1

ψN 0

+ eNλ

1 0

0 0

 , (2.5.5)

where:

T (AL,2−N) =

ψ̄Nψ1 0

0
∑

n ψn+1ψ̄n − ψ̄Nψ1

 ,

T (AL,N−2) =

∑n ψ̄n+1ψn − ψN ψ̄1 0

0 ψN ψ̄1

 .

(2.5.6)

After taking the trace of this, the expansion of the transfer matrix is:

t(AL) = NN ...N1

[
e−Nλ + e(2−N)λ

N∑
n=1

ψn+1ψ̄n + ...+ e(N−2)λ

N∑
n=1

ψ̄n+1ψn + eNλ

]
.

(2.5.7)

In fact, due to the order λ0 term in Ln being purely anti-diagonal, we can see that

every second term in the expansion of t(λ) will be 0 because of the trace. In order

to expand G and find the conserved quantities that we are interested in, we need

to choose which end of the series to focus on. In the limit as λ → +∞ the leading
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term will be eNλ, so that the expansion of the logarithm gives:

G(AL)(λ→ +∞) = Nλ+
N∑
n=1

ln (Nn) + e−2λ

N∑
n=1

ψ̄n+1ψn

+ e−4λ

N∑
n=1

(
ψ̄n+1ψn−1(1 + |ψn|2) +

1

2
ψ̄2
n+1ψ

2
n

)
+ ...,

(2.5.8)

while in the limit as λ→ −∞ the e−Nλ term will dominate, giving:

G(AL)(λ→ −∞) = −Nλ+
N∑
n=1

ln (Nn) + e2λ

N∑
n=1

ψn+1ψ̄n

+ e4λ

N∑
n=1

(
ψn+1ψ̄n−1(1 + |ψn|2) +

1

2
ψ2
n+1ψ̄

2
n

)
+ ....

(2.5.9)

In order to extract physical quantities from this we need to add the equivalent

order results from both ends. Doing this gives the first three conserved quantities

for the AL model as:

I
(AL)
0 = 2

N∑
n=1

ln (Nn) ,

I
(AL)
2 =

N∑
n=1

(ψ̄n+1ψn + ψn+1ψ̄n),

I
(AL)
4 =

N∑
n=1

(
(1 + |ψn|2)(ψ̄n+1ψn−1 + ψn+1ψ̄n−1) +

1

2
(ψ̄2

n+1ψ
2
n + ψ2

n+1ψ̄
2
n)
)
.

(2.5.10)

As can be seen these are all local quantities, with the non-locality of the order e±4λ

terms having been removed by the logarithm. The combination:

H(AL) = I
(AL)
2 + I

(AL)
0 =

N∑
n=1

(ψ̄n+1ψn + ψn+1ψ̄n + 2ln (Nn)), (2.5.11)

can be recognised as the Hamiltonian for the AL model [26], such that using it in

Hamilton’s equation with the AL Poisson brackets, (2.4.7), returns the AL equations

of motion, (2.4.1).
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2.5.2 An-Matrices

For each of the conserved quantities generated through the method of the previous

section, In, we can associate a corresponding time flow tn, such that the conserved

quantity generates the evolution of the fields along tn. Each of the resulting evolution

equations will also arise as the compatibility condition of a Lax pair. As the spatial

component, Ln, supplies the hierarchy of conserved quantities, it is the An-matrix

that will differ between each of these systems.

As in the continuous case, we can derive such a generator by considering Hamil-

ton’s equation with the entire generator of the conserved quantities, t, in place of

the Hamiltonian, and equating this to the zero-curvature condition (but with the

generator of the An-matrices, labelled An):

∂t̄Lb,n = Ab,n+1(λ, µ)Lb,n(λ)− Lb,n(λ)Ab,n(λ, µ)

=
{

ln tra{Ta(µ)}, Lbn(λ)
}

= t−1(µ)tra {La,N(µ)...La,1(µ), Lb,n(λ)}

= t−1tra {La,N ...La,n+1[rab(µ− λ), La,n(µ)Lb,n(λ)]La,n−1...La,1} ,

(2.5.12)

where t̄ is the universal time flow. By expanding the commutator in the last line of

this, we can see that the generator for the An-matrices is:

An(λ, µ) = t−1(µ)tra {La,N(µ)...La,n(µ)rab(µ− λ)La,n−1(µ)...La,1(µ)} . (2.5.13)

If we expand this generator about powers of µ, the coefficient of µk will be the

An-matrix that generates the same equations of motion as the conserved quantity

appearing at order µk in the expansion of G(µ). We could repeat this calculation,

but starting from the generator t(λ) instead. Then, the generator of the A-matrices

would be:

An(λ, µ) = tra {La,N(µ)...La,n(µ)rab(µ− λ)La,n−1(µ)...La,1(µ)} . (2.5.14)
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Example: Ablowitz-Ladik

Just as for the conserved quantities, we need to consider both limits of this model,

λ→ ±∞. In the limit as λ→ +∞, the first four An-matrices are:

A(AL,−0)
n = −

1 0

0 0

 , A(AL,−1)
n = A(AL,−3)

n = 0,

A(AL,−2)
n = −

2e2λ + 2ψ̄nψn−1 −eλψ̄n

−eλψn−1 3e2λ + ψ̄nψn−1

 .

(2.5.15)

In the limit as λ→ −∞, the first four An-matrices are:

A(AL,0)
n =

0 0

0 1

 , A(AL,1)
n = A(AL,3)

n = 0,

A(AL,2)
n =

3e−2λ + ψnψ̄n−1 −e−λψ̄n−1

−e−λψn 2e−2λ + 2ψnψ̄n−1

 ,

(2.5.16)

so that, just as the Hamiltonian was built by combining the results from each end

and adding the zeroth and second order terms, the temporal component of the AL

Lax pair, (2.4.4), is built as:

A(AL)
n = (A(AL,2)

n + A(AL,−2)
n ) + (A(AL,0)

n + A(AL,−0)
n ), (2.5.17)

up to an overall factor of 3(e−2λ− e2λ)I, which can be seen to leave the equations of

motion invariant by looking at the zero-curvature condition, (2.4.3).

2.6 Discrete Open Boundary Conditions

2.6.1 Conserved Quantities

When we introduce non-periodic boundary conditions into models with discrete

space, we need to introduce K±-matrices that lie at the n = N + 1 (for K+) and

n = 0 (for K−) boundaries. These are equivalent to the K±-matrices from the
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continuous discussion in Section 2.3, and as they were introduced at the level of

the monodromy matrix through Sklyanin’s double-row transfer matrix, (2.3.3), and

the monodromy matrices in both the continuous and discrete cases satisfy the same

algebras, (2.2.2) and (2.5.2) respectively, the K±-matrices appear in the discrete

transfer matrix in an identical manner:

t̄(λ) = tr
{
K+(λ)T (N, 1;λ)K−(λ)T−1(N, 1;−λ)

}
, (2.6.1)

and need to satisfy (for non-dynamical boundary conditions, which are all we con-

sider) the static classical reflection equation, (2.3.1). The conserved quantities that

we are interested in appear as the coefficients in the expansion of Ḡ(λ) = ln (̄t(λ)).

Example: Ablowitz-Ladik

The Ablowitz-Ladik model has previously been considered in the case of non-periodic

boundary conditions in [30] and [31]. We re-derive their results for comparison

against the open quantum Ablowitz-Ladik model discussed in Chapter 4.

The most general K±-matrices that solve (2.3.1) with the choice of r-matrix for

the AL model are:

K
(AL)
± (λ) =

α±eλ + e−λ 0

0 eλ + α±e−λ

 , (2.6.2)

where α± are free parameters that lie at the two ends of the system, α+ at (N + 1)

and α− at 0. Expanding the double-row transfer matrix as λ → +∞, the first two

non-zero conserved quantities are:

Ī
(AL)
−0 = ln (α+) + ln (α−)−

N∑
n=1

ln (Nn) ,

Ī
(AL)
−2 =

1

α+

NN +
1

α−
N1 +

N−1∑
n=1

(ψ̄n+1ψn + ψn+1ψ̄n).

(2.6.3)
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In the λ→ −∞ limit, the first two non-trivial terms are identically:

Ī
(AL)
0 = ln (α+) + ln (α−)−

N∑
n=1

ln (Nn) ,

Ī
(AL)
2 =

1

α+

NN +
1

α−
N1 +

N−1∑
n=1

(ψ̄n+1ψn + ψn+1ψ̄n).

(2.6.4)

The closed Hamiltonian was found by taking the sum of the results in the two

limits, however we can see here that the open Hamiltonian arises from either choice

of limit (after removing the constant factors of α± from Ī
(AL)
0 ):

H̄(AL) = Ī
(AL)
−2 − 2Ī

(AL)
−0 = Ī

(AL)
2 − 2Ī

(AL)
0

=
N−1∑
n=1

(ψ̄n+1ψn + ψn+1ψ̄n) + 2
N∑
n=1

ln (Nn) +
1

α+

NN +
1

α−
N1.

(2.6.5)

When we consider the Poisson brackets of this with the fields, we need to consider

the bulk and boundary separately. In the bulk (that is, away from n = 1, N), we

find the original equations of motion, (2.4.1):

∂tψn = 2ψn − Nn(ψn+1 + ψn−1), ∂tψ̄n = −2ψ̄n + Nn(ψ̄n+1 + ψ̄n−1). (2.6.6)

At the n = N boundary, we find:

∂tψN = 2ψN−NN

(
ψN−1 −

ψN
α+

)
, ∂tψ̄N = −2ψ̄N+NN

(
ψ̄N−1 −

ψ̄N
α+

)
, (2.6.7)

whereas for the n = 1 boundary we get:

∂tψ1 = 2ψ1 − N1

(
ψ2 −

ψ1

α−

)
, ∂tψ̄1 = −2ψ̄1 + N1

(
ψ̄2 −

ψ̄1

α−

)
. (2.6.8)

These agree with the results in [30] and [31].

2.6.2 An-Matrices

The final thing to do for the discrete models is to construct the A-matrices that

provide the same boundary results as were found from the open Hamiltonians in
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the previous subsection. To do this, we follow the derivation of the generator for

the A-matrices with closed boundary conditions, (2.5.13), but replace the initial

transfer matrix t with the double-row version t̄, from (2.6.1). The generator of the

open A-matrices in the bulk is then:

Āb,n = t̄−1(µ)tra
{
Ka,+(µ)Ta(N, n;µ)rab(µ− λ)Ta(n− 1, 1;µ)Ka,−(µ)T−1

a (−µ)

−Ka,+(µ)Ta(µ)Ka,−(µ)T−1
a (n− 1, 1;−µ)rab(−µ− λ)T−1

a (N, n;−µ)
}
,

(2.6.9)

where, in order to find the boundary results, we replace the appropriate monodromy

matrices with the identity. By thinking of the zero-curvature condition, we can see

that the n = N boundary needs the matrix AN+1, so the positive boundary is

generated by:

Āb,N+1 = t̄−1(µ)tra
{
Ka,+(µ)rab(µ− λ)Ta(µ)Ka,−(µ)T−1

a (−µ)

−Ka,+(µ)Ta(µ)Ka,−(µ)T−1
a (−µ)rab(−µ− λ)

}
.

(2.6.10)

At the negative boundary (n = 1) the generator is instead:

Āb,1 = t̄−1(µ)tra
{
Ka,+(µ)Ta(µ)rab(µ− λ)Ka,−(µ)T−1

a (−µ)

−Ka,+(µ)Ta(µ)Ka,−(µ)rab(−µ− λ)T−1
a (−µ)

}
.

(2.6.11)

When these are expanded about powers of µ, the coefficients of µk will give the

same equations of motion (through the zero-curvature condition) as the open Hamil-

tonian (through Hamilton’s equation) that appeared at order µk in the expansion

of Ḡ.

Example: Ablowitz-Ladik

Expanding the bulk generator, (2.6.9), with the Ablowitz-Ladik r-matrix, (2.4.6),

and K±-matrices, (2.6.2), provides the open A-matrices for the AL model. Because

the results found from the two separate limits are the same, we only need to consider

the limit λ → ∞, where the first two non-zero A-matrices (recalling that the odd-
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powered terms are trivial) in the bulk are:

A(AL,0)
n = −

2 0

0 3

 , (2.6.12)

A(AL,2)
n = −(e2λ + e−2λ)

2 0

0 3

+

ψnψ̄n−1 − 2ψ̄nψn−1 eλψ̄n − e−λψ̄n−1

eλψn−1 − e−λψn 2ψ̄nψn−1 − ψnψ̄n−1

 ,

while at the positive boundary we have:

A(AL,0)
N+1 = −

2 0

0 3

 , (2.6.13)

A(AL,2)
N+1 = −(e2λ + e−2λ)

2 0

0 3

+

 1
α+
|ψN |2 −( 1

α+
eλ + e−λ)ψ̄N

(eλ + 1
α+

e−λ)ψN
−1
α+
|ψN |2

 ,

and at the negative boundary:

A(AL,0)
1 = −

2 0

0 3

 , (2.6.14)

A(AL,2)
1 = −(e2λ + e−2λ)

2 0

0 3

+

 1
α−
|ψ1|2 (eλ + 1

α−
e−λ)ψ̄1

−( 1
α−

eλ + e−λ)ψ1
−1
α−
|ψ1|2

 .

Finally, in parallel to how the open Hamiltonian was constructed, we find the

time halves of the AL Lax pair in the presence of open boundary conditions by

considering:

A
(AL)
1 = A(AL,2)

1 − 2A(AL,0)
1 + (3e2λ + 2e−2λ + 5)I,

A(AL)
n = A(AL,2)

n − 2A(AL,0)
n + (3e2λ + 2e−2λ + 5)I,

A
(AL)
N+1 = A(AL,2)

N+1 − 2A(AL,0)
N+1 + (3e2λ + 2e−2λ + 5)I,

(2.6.15)

where the extra constant commuting factors are merely added to make the expres-

sions simpler.
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Dual Hierarchies

By considering the equal prominence of the space and time coordinates in the La-

grangian picture of a (1+1)-dimensional system, a dual Hamiltonian formulation of

the non-linear Schrödinger model was constructed in [13], which had equal-space

Poisson brackets (in place of the equal-time Poisson brackets) and dual integrals

of motion that are conserved with respect to space-evolution rather than time-

evolution. We focus here on the Lax pair construction rather than the Lagrangian

picture emphasised in previous works.

In this chapter, we repeat the dual construction of the non-linear Schrödinger

model (from [13]) and build the dual construction of the isotropic Landau-Lifshitz

model in the language of Lax pairs. It follows mostly in parallel with Chapter 2,

with the only divergences being where we emphasise important differences between

the two pictures, such as in the limiting procedure of the exponential in the case of

open boundary conditions, and where we digress to give an example of how this dual

picture can be used to find integrable systems depending non-trivially on additional

fields.

Section 3.4 considers the introduction of time-like boundary conditions. This

idea was first introduced in [11], where it was applied to the NLS model, and was

later applied to the HM model in [10]. The chapter is built out of these two papers.
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3.1 Poisson Brackets

The first step in this dual construction is defining the equal-space Poisson brackets

(3.1.8) through the use of the r-matrix and an analogue of the linear algebraic

relation. However, as the hierarchy will now describe a series of commuting space

flows, the ψ′ and ψ̄′ in the NLS V -matrix (2.1.2) and the S ′σ in the HM V -matrix

(2.1.3) will all be derivatives with respect to a specific space flow. For the NLS

model this will be the 2nd order flow, x2, while for the HM model this will be the

0th order flow, x0. These choices of flow will be justified later. Consequently, to

prevent later confusion, we define these as some new fields, φ and φ̄ for the NLS

model and Σσ for the HM model.

These new fields will be identified with their appropriate derivatives when we

consider the equations of motion for the appropriate dual Hamiltonian or V -matrix

(namely, the 2nd order results for the NLS model and the 0th order for the HM

model). Specifically, these results can be seen in (3.2.14) for the NLS model and

(3.2.17) for the HM model. When we work with the equations of motion found from

a different space flow (as we will in Section 3.3), these new fields will be shown to

act as wholly independent fields, with their own distinct space-evolution.

With these new fields, the NLS V -matrix that we consider is:

V (NLS) =

λ2

2
− |ψ|2 λψ̄ + φ̄

λψ − φ −λ2

2
+ |ψ|2

 , (3.1.1)

and the HM V -matrix is:

V (HM) =
1

2λ2
S − 1

2c2λ
ΣS, (3.1.2)

with:

Σ =

Σz Σ−

Σ+ −Σz

 . (3.1.3)

In the standard picture the Poisson brackets are related to the U - and r-matrices

through (2.1.8), so we would expect a similar relation between the equal-space Pois-

son brackets and the V - and r-matrices. Indeed, in the original works [12, 13] the
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dual NLS Poisson brackets were extracted from the Lagrangian picture and then

written in terms of the standard Yangian r-matrix through:

{Va(t1, λ), Vb(t2, µ)}T = [rab(λ− µ), Va(t1, λ) + Vb(t2, µ)] δ(t1 − t2). (3.1.4)

By describing the NLS space-flow as a particular choice of one time-flow in an

underlying (0 + 1)-dimensional system, a similar r-matrix structure was provided

for the whole NLS hierarchy in [32]. As that process built off of the underlying su2

form of the Lax matrices, it will apply to the HM model as well, allowing us to

consider the dual construction of the HM model in terms of (3.1.4).

For the NLS model, inserting both the modified V -matrix, (3.1.1), and the same

r-matrix as for the standard construction, (2.1.7), the dual Poisson brackets between

the four fields are:

{ψ(t1), ψ̄(t2)}T = {φ(t1), φ̄(t2)}T = 0,

{ψ(t1), φ(t2)}T = {ψ̄(t1), φ̄(t2)}T = 0,

{ψ(t1), φ̄(t2)}T = {ψ̄(t1), φ(t2)}T = δ(t1 − t2).

(3.1.5)

These take the form of two conjugate pairs, (ψ, φ̄) and (ψ̄, φ).

When we insert the modified HM V -matrix, (3.1.2), and the original HM r-

matrix, (2.1.7), into the expression for the dual Poisson brackets, (3.1.4), the dual

Poisson brackets for the HM model are:

{S±(t1), Sz(t2)}T = {S+(t1), S−(t2)}T = 0,

{S±(t1),Σz(t2)}T = {Sz(t1),Σ±(t2)}T = S±Sz δ(t1 − t2),

{Sz(t1),Σz(t2)}T = −S+S− δ(t1 − t2),

{S±(t1),Σ±(t2)}T = S2
± δ(t1 − t2),

{S±(t1),Σ∓(t2)}T = −(2S2
z + S+S−) δ(t1 − t2),

{Σσ1(t1),Σσ2(t2)}T = (Sσ1Σσ2 − Σσ1Sσ2) δ(t1 − t2).

(3.1.6)
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As well as sharing the Casimir element c2 = S2
z + S+S− with the original model,

these brackets have an additional commuting quantity:

c̃2 = 2SzΣz + S+Σ− + S−Σ+, (3.1.7)

where, in reference to how Σσ = ∂x0Sσ in the HM model, we choose to set c̃ = 0.

Consequently, when the HM model is considered and we can write the Σσ directly

as the derivatives of the Sσ, (3.1.7) becomes redundant as it is merely the derivative

of the original Casimir, (2.1.11). At any other level of the hierarchy however, we

cannot directly relate the Σσ and the Sσ, so the two Casimirs are distinct.

Introducing the fields Σx, Σy, and Σz in analogy to Sx, Sy, and Sz, these Poisson

brackets can be written more compactly by using the indices i, j ∈ {x, y, z}:

{Si(t1), Sj(t2)}T = 0,

{Si(t1),Σj(t2)}T = (SiSj − c2δij) δ(t1 − t2),

{Σi(t1),Σj(t2)}T = (SiΣj − SjΣi) δ(t1 − t2),

(3.1.8)

where the two Casimir elements are now:

c2 = S2
x + S2

y + S2
z , 0 = SxΣx + SyΣy + SzΣz. (3.1.9)

Finally, by defining the quantities:

ψ1 = S2
x, φ1 =

1

2c2

(
Σz

Sz
− Σx

Sx

)
,

ψ2 = S2
y , φ2 =

1

2c2

(
Σz

Sz
− Σy

Sy

)
,

(3.1.10)

the above Poisson brackets can be written in terms of two conjugate pairs (ψ1, φ1)

and (ψ2, φ2), where we use the two Casimir elements to discount two of the fields:

{ψ1(t1), ψ2(t2)}T = {φ1(t1), φ2(t2)}T = 0,

{ψi(t1), φj(t2)}T = δijδ(t1 − t2).

(3.1.11)
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Due however to the complicated form of the φi, we continue to work with the Sσ

and Σσ in what follows.

Further discussions on the Poisson structures arising here, as well as some more

general results, are presented in Appendix A.

3.2 Periodic Boundary Conditions

In both this section and the next (where open boundary conditions are considered),

we consider a system that lies on the interval [−τ, τ ], for some τ > 0. The periodic

boundary conditions in this setting are then ψ(τ) = ψ(−τ), φ(τ) = φ(−τ), and their

complex conjugates for the NLS model, and Sσ(τ) = Sσ(−τ) and Σσ(τ) = Σσ(−τ)

for the HM model.

3.2.1 Conserved Quantities

The construction of the dual model follows in parallel with Section 2.2. The first

object constructed is therefore the equal-space monodromy matrix, TT , which is a

solution in place of Ψ to the temporal half of the auxiliary linear problem, (2.1.1).

This is diagonalised (by analogy with the standard picture discussed in Chapter 2)

through the use of a diagonal matrix ZT and an anti-diagonal matrix WT :

TT (t1, t2;λ) = P exp

∫ t1

t2

V (ξ)dξ

=
(
I +WT (t1;λ)

)
eZT (t1,t2;λ)

(
I +WT (t2;λ)

)−1
.

(3.2.1)

Because we have chosen that the V -matrices satisfy a linear algebraic relation of

the form (3.1.4), the full equal-space monodromy matrix TT (λ) = TT (τ,−τ ;λ) will

satisfy a quadratic algebraic relation analogous to (2.2.2):

{TT,a(λ), TT,b(µ)}T = [rab(λ− µ), TT,a(λ)TT,b(µ)]. (3.2.2)
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Taking the trace of the equal-space monodromy matrix we get the equal-space

transfer matrix, tT :

tT (λ) = tr {TT (λ)}

= eZ11,T (λ) + eZ22,T (λ),

(3.2.3)

which, by virtue of the equal-space monodromy matrix satisfying the quadratic

relation (3.2.2), Poisson commute for different spectral parameters:

{tT (λ), tT (µ)}T = 0. (3.2.4)

Finally, as these two series Poisson commute, so will each pair of the coefficients

t
(k)
T . Therefore, if we take the logarithm of these, GT (λ) = ln (tT (λ)), we have that

the coefficients in the series expansion of GT (λ) Poisson commute with one another:

{G(k)
T ,G(j)

T }T = 0. (3.2.5)

As in Section 2.2, in order to expand GT we need to consider the leading order

contribution in each of Z11,T and Z22,T . Consequently, if we insert the diagonalisation

of TT into the temporal half of the auxiliary linear problem, (2.1.1), then we find

relations for the WT and ZT :

0 = ẆT + [WT , VD] +WTVAWT − VA,

ŻT = VD + VAWT ,

(3.2.6)

where now VD and VA are the diagonal and anti-diagonal components of the V -

matrix, respectively. Expanding WT and ZT in powers of λ as1:

WT (λ) =
∞∑
k=0

λ−kW
(k)
T , ZT (λ) =

∞∑
k=−2

λ−kZ
(k)
T , (3.2.7)

1Note that due to the underlying V -matrix having a higher dependence on λ (λ2 for NLS and
λ−2 for HM) than the highest dependence in the corresponding U -matrix (λ for NLS and λ−1 for
HM), the ZT series will need to start at k = −2 instead of k = −1.
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where again we switch from the NLS model to the HM model by replacing λ−1 → λ

due to the different limits being considered. We can then recursively solve (3.2.6).

Solving the first few orders of these, the first six ZT -matrices for the dual construc-

tion of the NLS model are:

Z
(NLS,−2)
T = τ

1 0

0 −1

 ,

Z
(NLS,−1)
T = Z

(NLS,0)
T = 0,

Z
(NLS,1)
T =

∫ τ

−τ

(
ψφ̄− φψ̄

)
dt

1 0

0 −1

 ,

Z
(NLS,2)
T =

∫ τ

−τ

(|ψ|4 − |φ|2)
1 0

0 −1

−
ψ̇ψ̄ 0

0 ψ ˙̄ψ

 dt,

Z
(NLS,3)
T =

∫ τ

−τ

ψ̄φ̇− ψ̇φ̄ 0

0 ˙̄ψφ− ψ ˙̄φ

 dt,

(3.2.8)

while for the HM model, the first three ZT -matrices are:

Z
(HM,−2)
T = cτ

1 0

0 −1

 ,

Z
(HM,−1)
T = 0, (3.2.9)

Z
(HM,0)
T =

1

2c

∫ τ

−τ

ṠzI + (c− Sz)

 Ṡ−
S−

0

0 − Ṡ+

S+

− 1

2c2
(Σ+Σ− + Σ2

z)

1 0

0 −1

 dt.

In both of these sequences, the Z
(−2)
T has positive Z

(−2)
T,11 and negative Z

(−2)
T,22 , so

that in the considered limits of λ the eZ11,T terms dominate over the eZ22,T in (3.2.3).

This allows us to simply expand the generator of the conserved quantities as:

GT = Z11,T + ..., (3.2.10)
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just like in the equal-time picture (2.2.13). For the NLS model, the first six dual

conserved quantities are therefore:

G(NLS,−2)
T = τ, G(NLS,−1)

T = G(NLS,0)
T = 0,

G(NLS,1)
T =

∫ τ

−τ

(
ψφ̄− φψ̄

)
dt,

G(NLS,2)
T =

∫ τ

−τ

(
|ψ|4 − |φ|2 − ψ̇ψ̄

)
dt,

G(NLS,3)
T =

∫ τ

−τ

(
ψ̄φ̇− ψ̇φ̄

)
dt,

(3.2.11)

the second of which, G(NLS,2)
T , we shall call the dual Hamiltonian for the NLS model:

H
(NLS)
T =

∫ τ

−τ

(
|ψ|4 − |φ|2 − ψ̇ψ̄

)
dt. (3.2.12)

Our reason for doing this is that if we combine this with the dual Poisson brackets

in (3.1.5) in a space-evolution analogue of Hamilton’s equation:

f′(x, t) = {HT , f(x, t)}T , (3.2.13)

then we find four space-evolution equations:

ψ′ = φ, ψ̄′ = φ′,

φ′ = 2ψ|ψ|2 − ψ̇, φ̄′ = 2ψ̄|ψ|2 + ˙̄ψ.

(3.2.14)

These can be recognised as the original equations of motion for the NLS model,

(1.1.1). As expected, the identification of the new fields φ and φ̄ with the spatial

derivatives of the original fields ψ and ψ̄ appears as part of the dual equations of

motion.

For the HM model, the first three conserved quantities are instead:

G(HM,−2)
T = cτ, G(HM,−1)

T = 0,

G(HM,0)
T =

1

2c

∫ τ

−τ

(
Ṡz + (c− Sz)

Ṡ−
S−
− 1

2c2
(Σ+Σ− + Σ2

z)

)
dt.

(3.2.15)
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Focussing on the third of these, if we use the periodic boundary conditions to remove

any total derivatives and multiply by a factor of −2c, G(HM,0)
T reduces to the dual

Hamiltonian for the HM model:

H
(HM)
T =

1

2

∫ L

−L

(
Ṡ+S− − S+Ṡ−

c+ Sz
+

1

c2
(Σ+Σ− + Σ2

z)

)
dt. (3.2.16)

Using this in the space-evolutive Hamilton’s equation, the space-evolution equations

are:

S ′σ = Σσ,

Σ′± = ±(S±Ṡz − Ṡ±Sz)−
1

c2
S±(Σ+Σ− + Σ2

z),

Σ′z =
1

2
(Ṡ+S− − S+Ṡ−)− 1

c2
Sz(Σ+Σ− + Σ2

z),

(3.2.17)

which are equivalent to the original equations of motion for the HM model, (1.1.3).

Again, the identification of the new fields with the derivatives of the old arises

naturally from the space-evolution equations.

3.2.2 U-Matrices

Using the equal space Poisson brackets and the tower of equal-space conserved quan-

tities, we can generate a whole hierarchy of space-evolution equations associated to

distinct systems. Consequently, we will also be interested in generating Lax pairs for

each of these systems. By following the derivation of (2.2.20) and (2.2.22), we can

derive a generator U for the tower of U -matrices that partner with the underlying

V -matrix of each of our systems, (3.1.1) for NLS and (3.1.2) for HM, which can be

generally written as:

Ub(t;λ, µ) = t−1
T (µ)tra {TT,a(τ, t;µ)rab(µ− λ)TT,a(t,−τ ;µ)} , (3.2.18)

or by using the known results and properties for the r-matrix, as well as the diag-

onalisation of TT , this can be reduced to an expression that lies only in one vector

space:

U(NLS)(t;λ, µ) = 2U(HM)(x;λ, µ) =
1

µ− λ
(
I+WT (t;µ)

)
e11

(
I+WT (t;µ)

)−1
. (3.2.19)
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For the NLS model, when we expand this generator about µ→∞, the first four

terms are:

U(NLS,1) =

1 0

0 0

 ,

U(NLS,2) =

λ ψ̄

ψ 0

 ,

U(NLS,3) =

λ2 − |ψ|2 λψ̄ + φ̄

λψ − φ |ψ|2

 ,

U(NLS,4) =

λ3 − λ|ψ|2 + (ψ̄φ− ψφ̄) λ2ψ̄ + λφ̄+ ˙̄ψ

λ2ψ − λφ− ψ̇ λ|ψ|2 − (ψ̄φ− ψφ̄)

 .

(3.2.20)

Up to the addition of a factor of −λ
2
I, the second of these can be recognised as the

spatial component of the NLS Lax pair, (2.1.2):

U (NLS) = U(NLS,2) − λ

2
I. (3.2.21)

Considering instead the HM model, the first three terms in the expansion of the

generator about µ→ 0+ are:

U(HM,0) =
−1

4λ
I− 1

4cλ
S,

U(HM,1) =
−1

4λ2
I− 1

4cλ2
S +

1

4c3λ
ΣS,

U(HM,2) =
−1

4λ3
I− 1

4cλ3
S +

1

4c3λ2
ΣS +

1

4c3λ
ṠS − 1

8c5λ
Σ2S.

(3.2.22)

If we remove the constant factor from the first of these and multiply by a factor of

−2c, U(HM,0) can then be identified with the spatial component of the HM Lax pair

(2.1.3):

U (HM) = −2c(U(HM,0) +
1

4λ
I). (3.2.23)

That these U -matrices agree with the known spatial components of the Lax pairs

guarantees that the equations of motion from the zero-curvature condition in this
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dual picture match the equations of motion arising from the zero-curvature condition

in the original picture, (1.1.1) for the NLS model and (1.1.3) for the HM model.

3.3 Higher Order Systems

The identification of the φ and Σσ with the derivatives of the ψ and Sσ, respectively,

appears as part of the equations of motion for the NLS and the HM models. If we

instead consider a different system in their hierarchies, these identifications will not

necessarily occur. We demonstrate this here for each of the two systems under study.

Non-Linear Schrödinger

For the NLS model, we consider the system at order λ4 in the dual hierarchy. This

has Lax pair (U(NLS,4), V ), where V is the usual NLS V -matrix taken from (3.1.1)

and U(NLS,4) is read from (3.2.20). If we insert this Lax pair into the zero-curvature

condition, we find the space-evolution of this new system:

ψ′ = −φ̇− 2ψ(ψ̄φ− ψφ̄),

ψ̄′ = ˙̄φ+ 2ψ̄(ψ̄φ− ψφ̄),

φ′ = ψ̈ − 2ψ̇|ψ|2 − 2φ(ψ̄φ− ψφ̄),

φ̄′ = ¨̄ψ + 2 ˙̄ψ|ψ|2 + 2φ̄(ψ̄φ− ψφ̄).

(3.3.1)

As stated above, these equations do not identify φ = ψ′ and φ̄ = ψ̄′, so describe the

space-evolution for four distinct fields.

Isotropic Landau-Lifshitz

For the HM model, we consider the system at order λ2 in the dual hierarchy. This

has Lax pair (U2, V ), where V is the HM V -matrix taken from (3.1.2) and we define:

U2 = −2c(U(HM,2) +
1

4λ3
I)

=
1

2λ3
S − 1

2c2λ2
ΣS − 1

2c2λ
ṠS +

1

4c4λ
Σ2S. (3.3.2)
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Inserting this Lax pair into the zero-curvature condition, we find the space-evolution

equations for this new system. The space-evolution of the three original fields, S±

and Sz, are:

S ′+ =
1

c2
(S+Σ̇z − SzΣ̇+) +

1

2c4
Σ+(Σ2

z + Σ+Σ−),

S ′− =
1

c2
(SzΣ̇− − S−Σ̇z) +

1

2c4
Σ−(Σ2

z + Σ+Σ−),

S ′z =
1

2c2
(S−Σ̇+ − S+Σ̇−) +

1

2c4
Σz(Σ

2
z + Σ+Σ−),

(3.3.3)

while the space-evolution of the three fields Σ± and Σz are:

Σ′+ =
1

c2
(Σ+Σ̇z − Σ̇+Σz) + S̈+ +

1

2c4
Σ+Σz(Ṡ+S− − S+Ṡ−)

+
1

2c4

(
Σ2
z(Ṡ+Sz − S+Ṡz) + Σ2

+(Ṡ−Sz − S−Ṡz)
)

+ S+

( 1

c2

(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6

(
Σ2
z + Σ+Σ−

)2
)
,

Σ′− =
1

c2
(Σ̇−Σz − Σ−Σ̇z) + S̈− +

1

2c4
Σ−Σz(Ṡ+S− − S+Ṡ−)

+
1

2c4

(
Σ2
z(S−Ṡz − Ṡ−Sz) + Σ2

−(S+Ṡz − Ṡ+Sz)
)

+ S−

( 1

c2

(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6

(
Σ2
z + Σ+Σ−

)2
)
,

Σ′z =
1

2c2
(Σ̇+Σ− − Σ+Σ̇−) + S̈z +

1

4c4
(Σ2

z − Σ+Σ−)(Ṡ+S− − S+Ṡ−)

+
1

2c4

(
Σ−Σz(S+Ṡz − Ṡ+Sz) + Σ+Σz(Ṡ−Sz − S−Ṡz)

)
+ Sz

( 1

c2

(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6

(
Σ2
z + Σ+Σ−

)2
)
.

(3.3.4)

These can be written more compactly in terms of the vectors ~S = (Sx, Sy, Sz)
T and

~Σ = (Σx,Σy,Σz)
T as:

~S ′ =
i

c2
(~S × ~̇Σ) +

1

2c4
|~Σ|2~Σ, (3.3.5)

~Σ′ =
i

c2
(~Σ× ~̇Σ)− i

2c4
|~Σ|2(~S × ~̇S) + ~̈S + ~S

( 1

c2
| ~̇S|2 − 1

2c6
|~Σ|4

)
+

i

c4
~Σ
(
~Σ · (~S × ~̇S)

)
.
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3.4 Open Boundary Conditions

3.4.1 Conserved Quantities

Finally, we consider the effect of introducing reflective boundary conditions to the

time-axis. This idea was introduced in [11], where it was applied to the NLS model.

Due to the r-matrix structure for the dual model, (3.1.4), being identical to the

r-matrix structure of the original model, (2.1.8), we introduce boundary conditions

in an identical manner. That is, we start by choosing a pair of matrices, K±, that

satisfy (2.3.1). Specifically, we use the same K-matrices as in the original picture,

(2.3.2):

K
(NLS)
± (λ) = K

(HM)
± (λ) = α±I + λ

δ± β±

γ± −δ±

 , (3.4.1)

where, just as in the standard picture of Chapter 2, we focus only on non-dynamical

boundary conditions. We introduce these K-matrices into the generator of the

spatially conserved quantities as [20, 11]:

t̄T (λ) = tr
{
K+(λ)TT (τ,−τ ;λ)K−(λ)T−1

T (τ,−τ ;−λ)
}
, (3.4.2)

from which we can use the quadratic relation (3.2.2) and the defining relation for the

K-matrices, (2.3.1), to derive the time-like equivalent of (2.3.3), which tells us that

the t̄T Poisson commute for different spectral parameters. Again, we are actually

interested in the coefficients in the expansion of ḠT (λ) = ln (̄tT (λ)), which will also

Poisson commute with one another:

{Ḡ(k)
T , Ḡ(j)

T }T = 0. (3.4.3)

In order to evaluate the series expansion of ḠT (λ), as well as diagonalising TT

through (3.2.1), we need to also diagonalise T−1
T through:

T−1
T (t1, t2;−λ) =

(
I +WT (t2;−λ)

)
e−ZT (t1,t2;−λ)

(
I +WT (t1;−λ)

)−1
. (3.4.4)

An important point here is that when we take the appropriate limit in λ of the

exponentiated term, due to the − sign in front of the ZT and the highest order term
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being (−λ)±2 = λ±2, the dominant term in the limit as λ goes to ∞ (for NLS) or

0+ (for HM) will instead (contrasted against (2.3.6)) be:

e−ZT (t1,t2;−λ) → e−Z22,T (t1,t2;−λ)e22 +O(e−λ
∓2

). (3.4.5)

Consequently, when the diagonalisations are inserted into the generator ḠT , we have

(where we suppress the parameters by defining f̂ = f(−λ) and W±,T = WT (±τ)):

ḠT (λ) = ln
(

eZ11,T−Ẑ22,T tr
{
K+

(
I +W+,T

)
e11

(
I +W−,T

)−1

×K−
(
I + Ŵ−,T

)
e22

(
I + Ŵ+,T

)−1
})

,

(3.4.6)

which can be separated into the bulk contribution and the two boundary contribu-

tions:

ḠT (λ) = Z11,T (λ)− Z22,T (−λ) + ln (W+(λ)) + ln (W−(λ)) , (3.4.7)

where we define:

W+(λ) =
[(
I +WT (τ ;−λ)

)−1
K+(λ)

(
I +WT (τ ;λ)

)]
21
,

W−(λ) =
[(
I +WT (−τ ;λ)

)−1
K−(λ)

(
I +WT (−τ ;−λ)

)]
12
.

(3.4.8)

Non-Linear Schrödinger

The bulk contributions to the open integrals of motion are found by using the ZT -

matrices from (3.2.8) in (3.4.7):

Ḡ(NLS,−2)
T = 2τ, Ḡ(NLS,−1)

T = Ḡ(NLS,0)
T = Ḡ(NLS,1)

T = 0,

Ḡ(NLS,2)
T =

∫ τ

−τ

[
2
(
|ψ|4 − |φ|2

)
−
(
ψ̇ψ̄ − ψ ˙̄ψ

)]
dt,

Ḡ(NLS,3)
T =

∫ τ

−τ

(
(ψ̄φ̇+ ˙̄ψφ)− (ψ̇φ̄+ ψ ˙̄φ)

)
dt.

(3.4.9)

Due to the logarithmic dependence of ḠT on W±, the lowest order contribution to
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the conserved quantities will appear at order λ0. As the conserved quantity at this

order is trivial, we expect this to be constant. Indeed, the first three contributions

from the boundary terms are:

ln (W+)(NLS,0) = ln (γ+) , ln (W+)(NLS,1) = 0,

ln (W+)(NLS,2) =
1

γ+

(
2α+ψ + 2δ+φ+ ψ(β+ψ − γ+ψ̄)

)
,

ln (W+)(NLS,3) = ψφ̄− φψ̄,

(3.4.10)

and:

ln (W−)(NLS,0) = ln (β−) , ln (W−)(NLS,1) = 0,

ln (W−)(NLS,2) =
1

β−

(
2α−ψ̄ − 2δ−φ̄− ψ̄(β−ψ − γ−ψ̄)

)
,

ln (W−)(NLS,3) = φψ̄ − ψφ̄.

(3.4.11)

By combining these boundary contributions with the bulk conserved quantities

above, we can extract the dual open NLS Hamiltonian from the order λ−2 terms:

H̄
(NLS)
T =

∫ τ

−τ

[
2
(
|ψ|4 − |φ|2

)
−
(
ψ̇ψ̄ − ψ ˙̄ψ

)]
dt

+
1

γ+

(
2α+ψ + 2δ+φ+ ψ(β+ψ − γ+ψ̄)

)
+

1

β−

(
2α−ψ̄ − 2δ−φ̄− ψ̄(β−ψ − γ−ψ̄)

)
.

(3.4.12)

Away from the boundaries, the Poisson brackets of H̄
(NLS)
T with each of the four

fields returns the space-evolution equations, (3.2.14). At the boundaries, however,

when the space-evolution is derived the condition that the fields at the boundary still

satisfy the usual space-evolution equations imposes extra conditions on the fields ψ,

ψ̄, φ, and φ̄, as well as the boundary fields α±, β±, γ±, and δ±. These conditions

are the time-like boundary conditions for the NLS model:

δ± = 0, γ+ = β− = 1,

ψ̄(+τ) = α+ + β+ψ(+τ), ψ(−τ) = α− + γ−ψ̄(−τ).

(3.4.13)
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Isotropic Landau-Lifshitz

The dual construction of the HM model is comparatively straight-forward, as the

dual Hamiltonian appears at order λ0 in the hierarchy, so following the reasoning

from our NLS considerations we only need to find the first order contribution from

the boundary terms, ln (W±). The calculation is kept non-trivial, however, by the

fact that the order λ0 term in the expansion of W± is 0, so that the actual lowest

order term is:

W(HM,1)
± =

1

2c

(
±2α±
c

( S±Σz

Sz + c
− Σ±

)
− 2δ±S± − β±

S+S±
Sz ± c

− γ±
S−S±
Sz ∓ c

)
, (3.4.14)

so that the first three terms in the expansion of ḠT are:

Ḡ(HM,−2)
T = 2cτ, Ḡ(HM,−1)

T = 0, (3.4.15)

Ḡ(HM,0)
T =

1

2c

∫ τ

−τ

(
S+Ṡ− − Ṡ+S−

c+ Sz
− 1

c2
(Σ+Σ− + Σ2

z)

)
dt+ ln

(
W(HM,1)

+ W(HM,1)
−

)
.

Multiplying Ḡ(HM,0)
T by the factor −c gives the Hamiltonian with open boundary

conditions:

H̄
(HM)
T =

∫ τ

−τ

(
1

2c2
(Σ+Σ− + Σ2

z) +
Ṡ+S− − S+Ṡ−

2(c+ Sz)

)
dt− cln

(
W(HM,1)

+ W(HM,1)
−

)
.

(3.4.16)

Using the same approach as for NLS, the boundary conditions can be extracted

from combining this Hamiltonian with the dual Poisson brackets. The requirement

that limt→±τ S
′
σ = S ′σ(±τ) restricts us to the case α± = 0. If we combine this with

the requirement that limt→±τ Σ′σ = Σ′σ(±τ), then we find the time-like boundary

conditions for the HM model:

α± = 0, β±S+ + γ±S− + 2δ±Sz = 0. (3.4.17)

3.4.2 U-Matrices

We can also find a generator for the U -matrices both in the bulk and at the bound-

aries. The generator for the bulk U -matrices will be (where we suppress the param-

47



Chapter 3: Dual Hierarchies

eter dependence on the left-hand side for compactness) [11]:

ŪB,b = t̄−1
T (µ)tra

{
K+,a(µ)TT,a(τ, t;µ)rab(µ− λ)TT,a(t,−τ ;µ)K−,a(µ)T−1

T,a(−µ)

+ K+,a(µ)TT,a(µ)K−,a(µ)T−1
T,a(t,−τ ;−µ)rab(µ+ λ)T−1

T,a(τ, t;−µ)
}
,

(3.4.18)

and, being mindful of the different limit for the T−1
T (−µ), this can be reduced to:

Ū(NLS)
B (t;λ, µ) = U(NLS)(t;λ, µ) +

1

µ+ λ

(
I +WT (t;−µ)

)
e22

(
I +WT (t;−µ)

)−1
,

(3.4.19)

where U(t;λ, µ) is the generator of the U -matrices with periodic boundary condi-

tions. The generator for the HM model is the same, except with 1
µ+λ
→ 1

2(µ+λ)
.

Unlike in the original case, where the second term differed from the first only by the

sign of the µ, here it differs both by the sign of the µ and in that the matrix e11 has

become e22. The boundary U -matrices are found by considering the generators:

Ū+,b(λ, µ) = t̄−1
T (µ)tra

{
K−,a(µ)T−1

T,a(−µ)K+,a(µ)rab(µ− λ)TT,a(µ)

+K−,a(µ)T−1
T,a(−µ)rab(µ+ λ)K+,a(µ)TT,a(µ)

}
,

Ū−,b(λ, µ) = t̄−1
T (µ)tra

{
K+,a(µ)TT,a(µ)rab(µ− λ)K−,a(µ)T−1

T,a(−µ)

+K+,a(µ)TT,a(µ)K−,a(µ)rab(µ+ λ)T−1
T,a(−µ)

}
,

(3.4.20)

which, for NLS, can be simplified to:

Ū(NLS)
+,b (λ, µ) =

1

W+(µ)

(
1

µ− λ
(
I +WT (τ ;µ)

)
e12

(
I +WT (τ ;−µ)

)−1
K+(µ)

+
1

µ+ λ
K+(µ)

(
I +WT (τ ;µ)

)
e12

(
I +WT (τ ;−µ)

)−1
)
,

(3.4.21)

and:

Ū(NLS)
−,b (λ, µ) =

1

W−(µ)

(
1

µ− λ
K−(µ)

(
I +WT (−τ ;−µ)

)
e21

(
I +WT (−τ ;µ))

)−1

+
1

µ+ λ

(
I +WT (−τ ;−µ)

)
e21

(
I +WT (−τ ;µ)

)−1
K−(µ)

)
.

(3.4.22)
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The boundary generators for the HM model are relatedly Ū(HM)
±,b = 1

2
Ū(NLS)
±,b .

Non-Linear Schrödinger

Just as the first non-trivial conserved quantity in (3.4.9) is the Hamiltonian at order

λ−2, the first non-trivial U -matrix is the one corresponding to the Hamiltonian.

Also, as the order λ−3 conserved quantity is a total derivative, this turns out to also

be trivial. Consequently, the only open U -matrices we report here are the order λ−2

ones. In the bulk, these are:

U(NLS,2)
B =

 λ 2ψ̄

2ψ −λ

 , (3.4.23)

while at the t = +τ boundary they are:

U(NLS,2)
+ =

1

γ+

λγ+ + 2δ+ψ 2α+ − 2δ+λ+ 2β+ψ

2ψ −λγ+ − 2δ+ψ

 , (3.4.24)

and at the t = −τ boundary:

U(NLS,2)
− =

1

β−

 λβ− + 2δ−ψ̄ 2ψ̄

2α− − 2λδ− + 2γ−ψ̄ −λβ− − 2δ−ψ̄

 . (3.4.25)

Requiring that limt→±τ U(NLS,2)
B = U(NLS,2)

± gives rise to the same boundary conditions

as those found from the Hamiltonian approach, (3.4.13).

Isotropic Landau-Lifshitz

The lowest order term in the expansion of the bulk generator appears as the coeffi-

cient of µ0, and is:

U(HM,0)
B =

−1

2cλ

Sz S−

S+ −Sz

 = 2U(HM,0), (3.4.26)

where U(HM,0) is the U -matrix appearing at lowest order in the periodic case. The

first non-trivial terms in the expansion of each of the boundary generators also
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appear at order µ0. For the t = +τ boundary, this is:

U(HM,0)
+ =

1

2c(c+ Sz)W(1)
+

α+

λ2

S+(c+ Sz) −(c+ Sz)
2

S2
+ −S+(c+ Sz)



− 1

2λ

 −β+S
2
+ − γ+(c+ Sz)

2 2(c+ Sz)
(
δ+(c+ Sz) + β+S+

)
2S+

(
δ+S+ − γ+(c+ Sz)

)
β+S

2
+ + γ+(c+ Sz)

2

 ,
(3.4.27)

while at the t = −τ boundary, it is:

U(HM,0)
− =

1

2c(c+ Sz)W(1)
−

α−
λ2

S−(c+ Sz) S2
−

−(c+ Sz)
2 −S−(c+ Sz)



− 1

2λ

 β−(c+ Sz)
2 + γ−S

2
− −2S−

(
δ−S− − β−(c+ Sz)

)
−2(c+ Sz)

(
δ−(c+ Sz) + γ−S−

)
−β−(c+ Sz)

2 − γ−S2
−

 .
(3.4.28)

As with NLS, requiring that limt→±τ U(HM,0)
B = U(HM,0)

± gives rise to both the condi-

tion that α± = 0 (from the order λ−2 terms) and that β±S+ + γ±S− + 2δ±Sz = 0,

which agrees with the boundary conditions found from the Hamiltonian approach,

(3.4.17).

By comparing the time-like boundary conditions, (3.4.13) and (3.4.17), with

the respective associated space-like boundary conditions, (2.3.17) and (2.3.18), we

can see that there is no evident connection between the two. This asymmetry is

rooted in the fundamentally different dependence of the fields on the space and time

coordinates, as can be seen by comparing the forms of the equations of motion in

(1.1.1) against (3.2.14), and (1.1.3) against (3.2.17).
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The Quantum Auxiliary Linear

Problem

The theory of quantum spin chains is a well studied topic, with many of the tools

used in the previous chapters (such as the r-matrix and boundary K-matrices)

having originated in the quantum setting, and been translated into a classical context

through suitable limiting procedures. However, while the L-matrix (we only discuss

discrete quantum systems, i.e. spin chains here, so the discrete classical systems of

Section 2.4 are the closest classical parallel) alone does appear in the techniques of

quantum integrable spin chains, such as the quantum inverse scattering method or

the Bethe ansatz, its temporal partner (the A-matrix) is not commonly discussed.

This was in part due to the lack of a systematic analogue of the classical Semenov-

Tian-Shansky (STS) formula, (2.5.13). Such a formula was derived for both closed,

(4.1.16), and open, (4.3.15), spin chains in [14] (although the case of closed boundary

conditions was previously discussed in [33], and a similar result to that from [14]

was found) and is primarily what we address in this chapter.

The first thing we do therefore is derive a suitable quantum STS formula in

Section 4.1, then give examples in Section 4.2 with the XXX Heisenberg spin chain

(the model which the isotropic Landau-Lifshitz model studied in previous chapters

is the continuous classical analogue of) and the quantum Ablowitz-Ladik (qAL)

model [26], which is to be contrasted against the Ablowitz-Ladik model described

in Section 2.4.

As with the previous chapters, we then repeat the process for spin chains with
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open boundary conditions in Section 4.3 and work through the results for the open

XXX and qAL models (the qAL model has previously been studied in the context

of open boundary conditions in [34]) in Section 4.4. It is in these open models that

we see particular non-trivial quantum corrections arising.

This chapter is built out of the paper [14], with the addition of examples using

the XXX model.

4.1 Time Evolution in Closed Systems

The quantum L-matrix obeys the spatial half of the semi-discrete auxiliary-linear

problem, (2.4.2), with some auxiliary vector Ψan:

Ψa,n+1 = LanΨan, (4.1.1)

so when attempting to introduce an A-matrix that describes the time-evolution of

the system, we do so in an equivalent manner to the temporal half of the auxiliary

linear problem:

∂tΨan = AanΨan. (4.1.2)

The goal of this section is then to find a closed form expression for a generator, An,

of the A-matrices associated to a model described by a given L-matrix and r-matrix.

The Yang-Baxter and RLL Equations

The fundamental structure underlying quantum integrable models comes from the

Yang-Baxter equation [4]:

Rab(λ− µ)Rac(λ)Rbc(µ) = Rbc(µ)Rac(λ)Rab(λ− µ), (4.1.3)

where R is a matrix that acts on two copies of an underlying vector space, V ⊗ V ,

with the subscripts denoting which two copies it acts on, so that the whole equation

acts on V ⊗ V ⊗ V . The R-matrices are allowed to depend on some additional free

parameter, denoted by either λ or µ, called the spectral parameter.
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In the classical limit R → I + i~r + ..., the Yang-Baxter equation becomes the

classical Yang-Baxter equation, (2.1.6), which was used for the classical models

studied in previous chapters.

In the quantum setting (in the Heisenberg picture), the time evolution of the

operators in a system is given by Heisenberg’s equation:

∂tO = i[H,O], (4.1.4)

where O is the operator in question and H is the Hamiltonian. Thus, if we want

to find the time evolution of a system, we need to first find expressions for the

commutators between the fields of the model. We do this through the RLL relation:

Rab(λ− µ)Lan(λ)Lbn(µ) = Lbn(µ)Lan(λ)Rab(λ− µ), (4.1.5)

which can be recognised as the Yang-Baxter equation, (4.1.3), but with the c vector

space distinguished (and labelled here as n) so that the matrices acting on it become

Lax matrices. It will be beneficial to rewrite this in a more explicit manner:

[
Lan(λ), Lbm(µ)

]
=
(
Rab(λ−µ)Lan(λ)Lbn(µ)−Lbn(µ)Lan(λ)Rab(λ−µ)

)
δnm, (4.1.6)

where we define for compactness Rab(λ) = Iab−Rab(λ). The Kronecker delta factor

is introduced to more generally describe the commutativity of matrices acting on

wholly different spaces.

Generating Commuting Quantities

The generation of commuting quantities now follows the same process as for classical

discrete models, where we first define the transport matrix:

Ta(n,m;λ) = Lan(λ)...Lam(λ), (4.1.7)

with n > m, and then the monodromy matrix as Ta = Ta(N, 1). The monodromy

matrix satisfies an RTT relation, as can be found by using how objects acting on
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wholly different spaces commute with one another (so that LanLbm = LbmLan for

a 6= b and n 6= m) [18, 19]:

Rab(λ− µ)Ta(λ)Tb(µ) = Tb(µ)Ta(λ)Rab(λ− µ). (4.1.8)

The transfer matrix t is then defined as the trace of the monodromy matrix,

t(λ) = tra {Ta(λ)}, and by making use of the RTT relation we can see that this

commutes with itself for different values of the spectral parameter. Consequently, if

this is expanded as a power series in the spectral parameter, the coefficients t(k) of

λk will commute with one another:

[
t(k), t(j)

]
= 0. (4.1.9)

As these coefficients all commute with one another, the logarithm of the trans-

fer matrix can be considered, G(λ) = ln (t(λ)), and the coefficients in the series

expansion of that commute with one another as well:

[
G(k),G(j)

]
= 0. (4.1.10)

Each of the quantities generated in either of these ways can be treated as the

Hamiltonian governing the evolution along a distinct time flow. Then, as we know

that they commute with one another, this tells us that the other quantities will all

be constant in this system.

4.1.1 The A-Matrix Generator

In parallel to how the classical STS formula is derived, we start by using the transfer

matrix in place of the Hamiltonian:

∂t̄Lbn(µ) = i
[
t(λ), Lbn(µ)

]
, (4.1.11)

where t̄ denotes the “universal time” that contains all of the distinct time flows,

t̄ =
∑

n λ
ntn. Then, as the Lan commute with Lbm when both a 6= b and n 6= m (that
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is, they act ultra-locally), the only term in the t that interacts with the commutator

will be Lan:

∂t̄Lbn(µ) = itra
{
Ta(N, n+ 1;λ)

[
Lan(λ), Lbn(µ)

]
Ta(n− 1, 1;λ)

}
. (4.1.12)

Using the alternate form of the RLL relation, (4.1.6), we can evaluate this commu-

tator:

∂t̄Lbn(µ) = itra {Ta(N, n+ 1;λ)Rab(λ− µ)Ta(n, 1;λ)}Lbn(µ)

− iLbn(µ)tra {Ta(N, n;λ)Rab(λ− µ)Ta(n− 1, 1;λ)} ,
(4.1.13)

however, by comparing this with the compatibility condition of the two halves of

the quantum auxiliary linear problem we are constructing, (4.1.1) and (4.1.2):

∂tLan = Aa,n+1Lan − LanAan, (4.1.14)

it is evident that the generator of the A-matrices is written as [14]:

Abn(λ, µ) = itra {Ta(N, n;λ)Rab(λ− µ)Ta(n− 1, 1;λ)} , (4.1.15)

or by recalling the definition of R:

Abn(λ, µ) = it(λ)I− iBbn(λ, µ), (4.1.16)

where we define:

Bbn(λ, µ) = tra {Ta(N, n;λ)Rab(λ− µ)Ta(n− 1, 1;λ)} . (4.1.17)

To find the A-matrix associated to the Hamiltonian t(k), we simply expand

(4.1.17) about powers of λ and take the coefficient of order λk, labelled B(k)
bn , and

combine it with the Hamiltonian as:

A(k)
bn (µ) = it(k)I− iB(k)

bn (µ). (4.1.18)
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If we now insert this into the zero-curvature condition, (4.1.14), then the terms

explicitly containing t(k) are simply the right-hand side of Heisenberg’s equation.

Consequently, it follows that the B(k)
bn are only shifted by the action of the L-matrix

and leave Lan unchanged, i.e. LanB(k)
an = B(k)

a,n+1Lan. This can in fact be shown to

hold for the entire generator Bbn by using the RLL relation, (4.1.5):

Lan(µ)Ban(λ, µ) = Ba,n+1(λ, µ)Lan(µ). (4.1.19)

Logarithmic Generator

As mentioned when defining the generator of the commuting quantities, we are

actually interested in the quantities generated by G(λ). Unfortunately, however, the

process for finding the A-matrix generator in this quantum setting is not as simple

as it was for the equivalent classical case, since we can no longer use the fact that

[ln (a) , b] = a−1[a, b] due to the non-commutativity of t and [t,O]. Instead, we choose

to introduce the B-matrix dependence of the A-matrices with the intent of having

the classical limit agree. Specifically, we choose the generator of the A-matrices

corresponding to the Hamiltonians generated by G to be:

Abn(λ, µ) = iG(λ)I− iln (Bbn(λ, µ)) . (4.1.20)

Care needs to be taken here however, as the potential non-commutativity of the

Bbn inside the logarithm could cause this to not be well defined. Fortunately, we

can show that the different terms in the expansion of B do actually commute with

one another so that this is not a problem. We start by considering the product of

two such B-matrix generators and commute the terms that do not affect each other

such that the result is in a convenient form (where we also define T+ = T (N, n) and

T− = T (n− 1, 1)):

Bcn(µ, λ)Bcn(ξ, λ) = trab
{
T+
a (µ)Rac(µ− λ)T−a (µ)T+

b (ξ)Rbc(ξ − λ)T−b (ξ)
}

= trab
{
T+
a (µ)T+

b (ξ)Rac(µ− λ)Rbc(ξ − λ)T−a (µ)T−b (ξ)
}
.

(4.1.21)

Then, if we use the Yang-Baxter equation, (4.1.3), to reverse the order of the two
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R-matrices in this expression, we have:

= trab

{
T+
a (µ)T+

b (ξ)
(
Rab(µ− ξ)

)−1
Rbc(ξ − λ)Rac(µ− λ)Rab(µ− ξ)T−a (µ)T−b (ξ)

}
.

(4.1.22)

However, we can also use the RTT relations satisfied by the T±, (4.1.8), to swap the

order of the T±a and T±b with the help of the extra R-matrices from the Yang-Baxter

equation:

= trab

{(
Rab(µ− ξ)

)−1
T+
b (ξ)T+

a (µ)Rbc(ξ − λ)Rac(µ− λ)T−b (ξ)T−a (µ)Rab(µ− ξ)
}
.

(4.1.23)

Finally, as this is all inside a partial trace over the a and b spaces, we can cycle the

Rab so that it cancels out with its inverse. Rearranging the terms in the middle that

commute with each other we can return this expression to a familiar form:

= trab
{
T+
b (ξ)Rbc(ξ − λ)T−b (ξ)T+

a (µ)Rac(µ− λ)T−a (µ)
}

= Bcn(ξ, λ)Bcn(µ, λ),

(4.1.24)

which proves that
[
B(k)
an ,B(j)

an

]
= 0 for all k, j. Thus, it makes sense to talk about

the logarithm of these B-matrices, as we can factor the lowest order term (assumed

to be order k) out:

ln (Bbn(λ, µ)) = ln
(
B(k)
bn (µ)

)
+ ln

(
I +

(
B(k)
bn (µ)

)−1O(λ)
)
, (4.1.25)

whereupon the logarithm can be expanded for λ→ 0. A similar argument holds for

other choices of λ limit.

The Classical Limit

The classical limit we consider is where Rab(λ)→ I+ i~rab(λ) + ... and Lan → ~Lan.

As mentioned earlier, this limit converts the Yang-Baxter equation, (4.1.3), to its

classical counterpart, (2.1.6). It also converts the algebraic relation (4.1.6) to the

quadratic Poisson bracket relation (2.4.5) when we identify (i~)−1[·, ·]→ {·, ·}.

57



Chapter 4: The Quantum Auxiliary Linear Problem

The action of this limit on the generator of the B-matrices is as follows:

Bbn(λ, µ)→ ~Ntra
{
Ta(N, n;λ)

(
I + i~rab(λ− µ)

)
Ta(n− 1, 1;λ)

}
+ ...

→ ~N t(λ)I + i~N+1tra {Ta(N, n;λ)rab(λ− µ)Ta(n− 1, 1;λ)}+ ...,

(4.1.26)

so that the non-logarithmic A-matrix generator, (4.1.16), becomes:

Abn(λ, µ)→ ~N+1tra {Ta(N, n;λ)rab(λ− µ)Ta(n− 1, 1;λ)}+ ..., (4.1.27)

and the logarithmic generator (4.1.20) becomes:

Abn → iln
(
~N t
)
I− iln

(
~N tI + i~N+1tra {Ta(N, n)rab(λ− µ)Ta(n− 1, 1)}+ ...

)
→ −iln

(
I + i~t−1tra {Ta(N, n)rab(λ− µ)Ta(n− 1, 1)}+ ...

)
(4.1.28)

→ ~t−1(λ)tra {Ta(N, n;λ)rab(λ− µ)Ta(n− 1, 1;λ)}+ ....

The lowest order terms in each of these expansions exactly coincides with the gen-

erators for the classical A-matrices, (2.5.14) for the non-logarithmic version and

(2.5.13) for the logarithmic version.

4.2 Examples of Closed A-Matrices

We now give examples of the A-matrices for two well studied models: The Heisenberg

XXX spin chain (XXX) and a quantum Ablowitz-Ladik (qAL) model. First, we

define the two models in Subsection 4.2.1 before deriving the A-matrices for each of

these models in Subsection 4.2.2.

4.2.1 The Models of Interest

Heisenberg Spin Chain

The XXX Heisenberg spin chain is the prototypical integrable model, so is often

used to test new methodologies in quantum integrable spin chains due to its simple
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structure. The L-matrix for this model is:

L(XXX)
n (λ) = λI + i

1
2

+ Jzn J−n

J+
n

1
2
− Jzn

 = λI + iJn, (4.2.1)

where the Jσn are the three fields (with σ ∈ {z,+,−}). As this is a model for a

spin-1
2

system, we have the additional constraints that (J±n )2 = 0 and (Jzn)2 = 1
4
.

The R-matrix for this model is [5]:

R(XXX)(λ) = λI + i


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (4.2.2)

Combining these in (4.1.6) we find su2-type commutation relations between the fields

Jσn :

[Jzn, J
±
m] = ±J±n δnm, [J+

n , J
−
m] = 2Jznδnm. (4.2.3)

Knowing these commutation relations and the constraints on J±n and Jzn, the anti-

commutators between the fields can be extracted as J±n J
z
n + JznJ

±
n = 0 and J+

n J
−
n +

J−n J
+
n = 1. For the matrix Jn these manifest as the requirement that J2

n = I and:

JnJmJn =

(
1

2
+ 2JzmJ

z
n + J−mJ

+
n + J+

mJ
−
n

)
I ≡ JmnI, (4.2.4)

where we define Jnm. This coefficient also obeys the properties Jnm = Jmn, J2
nm = 1,

and JnmJnsJnm = Jms.

The Hamiltonian for this model is:

H(XXX) =
1

2

N∑
n=1

(J+
n+1J

−
n + J−n+1J

+
n + 2Jzn+1J

z
n) +

N

4
, (4.2.5)

and combining this with the commutation relations we can determine the evolution

equations for this Hamiltonian:

∂tJ
z
n = iJ−n (J+

n+1 + J+
n−1)− iJ+

n (J−n+1 + J−n−1),

∂tJ
±
n = ±2iJ±n (Jzn+1 + Jzn−1)∓ 2iJzn(J±n+1 + J±n−1).

(4.2.6)
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These can be more compactly written in terms of the matrix Jn as:

∂tJn = i
[
Jn, Jn+1 + Jn−1

]
. (4.2.7)

To find the commuting quantities, we first expand the monodromy matrix:

T (XXX)(λ) = λNI + iλN−1

N∑
n=1

Jn + ...+ iN−1λ

N∑
n=1

JN ...Jn+1Jn−1...J1 + iNJN ...J1.

(4.2.8)

In order to be able to calculate the terms at the λ0 end of this (which are the

terms we are interested in), we need to use the properties of the Jn noted above.

Specifically, that we can write JmJn = JnJnm. Using this, we can reverse the order

of the Jn in the lowest order term in the transfer matrix:

t(XXX,0) = iNtra {Ja1J12J23...JN−2,N−1JN−1,N} . (4.2.9)

Then, as we are tracing over the matrix space (labelled a) only the left-most Jn is

affected, so that the two lowest order terms in the transfer matrix are:

t(XXX,0) = iNJ12J23...JN−1,N−2JN−1,N . (4.2.10)

t(XXX,1) = iN−1

(
N−1∑
n=2

J12...Jn−1,n+1...JN−1,N + J23...JN−1,N + J12...JN−2,N−1

)
.

Combining these, we can find the first two terms in the expansion of the logarithmic

generator:

G(XXX,0) = N ln (i) + ln (J12J23...JN−1,N−2JN−1,N) ,

G(XXX,1) = (t(XXX,0))−1t(XXX,1) = −i

(
N∑
n=2

Jn,n−1 + J1N

)
,

(4.2.11)

the second of which can be identified as the XXX Hamiltonian, (4.2.5), after inserting

Jnm from (4.2.4) and multiplying by a factor of i
2
. The total momentum for the

system can also be recognised as G(XXX,0) after it is also multiplied by i
2
.
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Quantum Ablowitz-Ladik

The qAL model has Lax matrix [26]1:

L(qAL)
n (λ) = vn

eλ bn

an −e−λ

 , (4.2.12)

where the three fields are an, bn, and vn. The qAL R-matrix is [35]:

R(qAL)(λ) =


qeλ − q−1e−λ 0 0 0

0 γ(eλ − e−λ) q − q−1 0

0 q − q−1 γ−1(eλ − e−λ) 0

0 0 0 qeλ − q−1e−λ

 ,

(4.2.13)

where q is some additional parameter of the model, and γ = 1. These give rise to

the following commutation relations:

[an, vm] = (1− q)anvnδnm, [bn, vm] = (1− q−1)bnvnδnm,

[an, bm] = (q − q−1)v−2
n δnm,

(4.2.14)

with Casimir element qv−2
n − anbn = 1. The Hamiltonian for this system is:

H(qAL) =
N∑
n=1

(qbn+1an + q−1an+1bn), (4.2.15)

and the evolution equations are:

∂tan = i(q−1 − q)v−2
n (q−1an+1 + qan−1),

∂tbn = i(q − q−1)v−2
n (qbn+1 + q−1bn−1),

∂tvn = i(q−1 − 1)vnan(qbn+1 + q−1bn−1) + i(q − 1)vnbn(q−1an+1 + qan−1).

(4.2.16)

1The quantum Lax matrix used in this chapter differs from the classical one in Chapter 2
by the factor of -1 in the bottom-right element. Both choices lead to suitable Lax matrices for
the Ablowitz-Ladik model, however the removal of the minus sign changes the R-matrix so that
γ = q−3. The classical one is chosen without the minus sign so as to make the connection to
the NLS Lax pair through the continuum limit more evident, while the minus sign is kept in the
quantum case to keep the chapter in line with the results of [14].
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The first step in deriving the commuting quantities for this model is expanding

the monodromy matrix:

T (qAL) = vN ...v1

eNλ

1 0

0 0

+ e(N−1)λ

 0 b1

aN 0


+ e(N−2)λT (qAL,N−2) + ...+ (−1)Ne(2−N)λT (qAL,2−N)

−(−1)Ne(1−N)λ

 0 bN

a1 0

+ (−1)Ne−Nλ

0 0

0 1

 ,
(4.2.17)

where:

T (qAL,N−2) =

∑N−1
n=1 bn+1an 0

0 aNb1

 ,

T (qAL,2−N) =

bNa1 0

0
∑N−1

n=1 an+1bn

 .

(4.2.18)

Using these and the fact that [an, bm] is zero when n 6= m, the transfer matrix can

be determined:

t(qAL) = vN ...v1

[
eNλ + e(N−2)λ

N∑
n=1

bn+1an + ...

+(−1)Ne(2−N)λ

N∑
n=1

an+1bn + (−1)Ne−Nλ

]
,

(4.2.19)

which provides a series of commuting conserved quantities. We, however, are in-

terested in the quantities generated by the logarithmic generator G(λ). In order to

evaluate this we need to choose one of λ → ±∞ as the limit. Labelling the coef-

ficient of e∓kλ in the λ → ±∞ limit as G(qAL,∓k), the commuting quantities at the

lowest order at either end agree:

G(qAL,0) = G(qAL,−0) =
N∑
n=1

ln (vn) , (4.2.20)
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while they diverge at higher orders:

G(qAL,−2) =
N∑
n=1

bn+1an, G(qAL,2) =
N∑
n=1

an+1bn,

G(qAL,−4) =
1

2

N∑
n=1

(
bn+1(anbn + bnan − 2)an−1 + b2

n+1a
2
n

)
,

G(qAL,4) =
1

2

N∑
n=1

(
an+1(anbn + bnan − 2)bn−1 + a2

n+1b
2
n

)
.

(4.2.21)

These should be compared to their classical analogues in (2.5.10). Recalling the

Hamiltonian for this model, (4.2.15), we can recognise it as the combination of the

order 2 terms, H(qAL) = qG(qAL,−2) + q−1G(qAL,2).

4.2.2 The A-Matrices

We now use our quantum STS formula, (4.1.20), to derive the A-matrices associated

to the commuting quantities calculated above. For each of the models, the first step

is to calculate the B-matrices using (4.1.17).

Heisenberg Spin Chain

The lowest order term in the expansion of the B-matrix generator can be read off

from (4.2.2) and (4.2.8):

B(XXX,0)
bn = iNtra {JaN ...Jan(iPab − λI)Ja,n−1...Ja1}

= iNJ12 ... Jn−2,n−1(iJb,n−1Jbn − λJn−1,nI)Jn,n+1 ... JN−1,N , (4.2.22)

where Pab is the permutation matrix and can be read off from (4.2.2). The λ in the

R-matrix has a different sign to (4.2.2) because we are considering the lowest order

term in the expansion of R(µ− λ) about powers of µ.

Because the total momentum of the XXX spin chain was G(XXX,0), we can use

the zeroth order term from the expansion of the logarithmic A-matrix generator,
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(4.1.20), to provide the A-matrix associated to the total momentum:

A(XXX,0)
an = iG(XXX,0)I− iln

(
B(XXX,0)
an

)
= −iln

(
−1− λ2

)
I + iln (λI + iJan) ,

(4.2.23)

which, after removing the overall constant commuting factor is just:

A(XXX,0)
an = iln (Lan) . (4.2.24)

The A-matrix that we are primarily interested in finding, however, is the one at

order λ1, which will be associated to the Hamiltonian (4.2.5). To find this, we need

both the inverse of (4.2.22):

(B(XXX,0)
bn )−1 =

−1

iN(1 + λ2)
JN,N−1 ... Jn+1,n(iJbnJb,n−1 + λJn−1,nI)Jn−1,n−2 ... J21,

(4.2.25)

and the order λ1 term in the expansion of the B-matrix generator:

B(XXX,1)
bn =

(
t(XXX,0) − λt(XXX,1)

)
I + iN

(
J23 ... Jn−1,bJbn ... JN−1,N

+
n−2∑
m=2

J12 ... Jm−1,m+1 ... Jn−1,bJbn ... JN−1,N

+ J12 ... Jn−2,bJbn ... JN−1,N + J12 ... Jn−1,bJb,n+1 ... JN−1,N

+
N−1∑

m=n+1

J12 ... Jn−1,bJbn ... Jm−1,m+1 ... JN−1,N

+ J12 ... Jn−1,bJbn ... JN−2,N−1

)
.

(4.2.26)

Combining these, we can find the next A-matrix in the XXX hierarchy:

A(XXX,1)
bn = iG(XXX,1)I− i(B(XXX,0)

bn )−1B(XXX,1)
bn

=
iλ

1 + λ2
I +

iλ

1 + λ2
[Jb,n−1, Jnb]−

1

1 + λ2
(Jbn + Jb,n−1 − Jn,n−1I).

(4.2.27)

Finally, if we remove the constant iλ
1+λ2

I from this and scale it by the same factor
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of i
2

that we used for the Hamiltonian, we are left with the A-matrix for the XXX

spin chain:

A
(XXX)
bn =

−1

2(1 + λ2)

(
λ[Jb,n−1, Jbn] + i(Jbn + Jb,n−1 − Jn,n−1I)

)
. (4.2.28)

Quantum Ablowitz-Ladik

As with the Hamiltonians, we need to consider the two limits λ → ±∞ of this

model separately. Also like for the Hamiltonians, the odd-ordered terms will all be

trivial, due to the odd-ordered contributions from the Lax and R-matrices being

anti-diagonal. In the limit as λ→ +∞, the first two2 non-trivial B-matrices are:

B(qAL,−0)
n = e−λvN ...v1

q 0

0 1

 ,

B(qAL,−2)
n = vN ...v1

e−λ(1− q)bnan−1 − eλq−1 (q − q−1)bn

(q − q−1)an−1 e−λ(q − 1)bnan−1 − eλ



+ e−λvN ...v1

N∑
k=1

bk+1ak

q 0

0 1

 ,

(4.2.29)

while the first two non-trivial B-matrices in the λ→ −∞ limit are:

B(qAL,0)
n = eλvN ...v1

1 0

0 q−1

 ,

B(qAL,2)
n = vN ...v1

eλ(q−1 − 1)anbn−1 − e−λ (q − q−1)bn−1

(q − q−1)an eλ(1− q−1)anbn−1 − e−λq



+ eλvN ...v1

N∑
k=1

ak+1bk

1 0

0 q−1

 .

(4.2.30)

The Hamiltonian was found by considering the logarithmic generator G, so the

B-matrices we actually need are extracted from these by taking the logarithm. In

2We only provide the first two B-matrices from each end as beyond that the expressions become
overly bulky.
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the λ→ +∞ limit, the resulting A-matrices are:

A(qAL,−0)
n = iG(qAL,−0)I− iln

(
B(qAL,−0)
n

)

= i

λ− ln (q) 0

0 λ

 ,

A(qAL,−2)
n = iG(qAL,−2)I− i(B(qAL,−0)

n )−1B(qAL,−2)
n

= i

(1− q−1)bnan−1 + e2λq−2 eλq−1(q−1 − q)bn
eλ(q−1 − q)an−1 (1− q)bnan−1 + e2λ

 ,

(4.2.31)

and the A-matrices arising in the λ→ −∞ limit are:

A(qAL,0)
n = iG(qAL,0)I− iln

(
B(qAL,0)
n

)

= i

−λ 0

0 ln (q)− λ

 ,

A(qAL,2)
n = iG(qAL,2)I− i(B(qAL,0)

n )−1B(qAL,2)
n

= i

(1− q−1)anbn−1 + e−2λ e−λ(q−1 − q)bn−1

e−λq(q−1 − q)an (1− q)anbn−1 + e−2λq2

 .

(4.2.32)

Finally, we take the sum of the order 2 components to find the A-matrix equivalent

to the Hamiltonian, (4.2.15):

A(qAL)
n = qA(qAL,−2)

n + q−1A(qAL,2)
n

= i

(1− q−1)(q−1anbn−1 + qbnan−1) (q−1 − q)(e−λq−1bn−1 + eλbn)

(q−1 − q)(e−λan + eλqan−1) (1− q)(q−1anbn−1 + qbnan−1)



+ i(e2λ + e−2λ)

q−1 0

0 q

 . (4.2.33)

This should be compared to its classical analogue in (2.4.4).
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4.3 Time Evolution in Open Systems

Of particular interest is when integrable boundary conditions are incorporated into

this construction. Due to the similar forms of the (rearranged) quantum algebra,

(4.1.6), and its discrete equivalent, (2.4.5), the derivation of (4.1.16), the quan-

tum analogue of (2.5.14), followed an almost identical procedure with the non-

commutativity of the fields not appearing in any way (outside of the logarithmic

generator). When integrable boundary conditions are included, however, additional

complexities will arise, leading to an expression that is quadratic in the R-matrix,

where the classical version, (2.6.9), was still linear in r.

The boundary conditions are described by some K±-matrices that need to satisfy

the reflection equations. The K-matrix at the n = 0 boundary needs to satisfy

[36, 20]:

Rab(λ−µ)K−,a(λ)Rba(λ+µ)K−,b(µ) = K−,b(µ)Rab(λ+µ)K−,a(λ)Rba(λ−µ), (4.3.1)

while the K-matrix at the n = N + 1 boundary obeys an equivalent relation [37]:

(
R−1
ab (λ− µ)

)tabKta
+,a(λ)

((
Rta
ba(λ+ µ)

)−1)tbKtb
+,b(µ)

= Ktb
+,b(µ)

((
Rta
ab(λ+ µ)

)−1)tbKta
+,a(λ)

(
R−1
ba (λ− µ)

)tab , (4.3.2)

where ta , tb , and tab are partial transpositions in the a, b, and combined spaces,

respectively. In the classical limit (assuming that the boundary fields are static) the

classical reflection equation used in the prior chapters, (2.3.1), is returned.

Using these boundary matrices, the transfer matrix t is replaced with Sklyanin’s

double row transfer matrix [20]:

t̄(λ) = tra
{
K+,a(λ)Ta(λ)K−,a(λ)T−1

a (−λ)
}
. (4.3.3)

Before we can show that this commutes with itself for different spectral parameters,

we need to first prove that K−(λ) = T (λ)K−(λ)T−1(−λ) satisfies the reflection

equation, (4.3.1). To do this we make repeated use of the RTT relation, (4.1.8),
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which we mark by square brackets [...]:

LHS (4.3.1) = Rab(λ− µ)Ta(λ)K−,a(λ)
[
T−1
a (−λ)Rba(λ+ µ)Tb(µ)

]
K−,b(µ)T−1

b (−µ)

= Rab(λ− µ)Ta(λ)K−,a(λ)
[
Tb(µ)Rba(λ+ µ)T−1

a (−λ)
]
K−,b(µ)T−1

b (−µ)

=
[
Rab(λ− µ)Ta(λ)Tb(µ)

]
K−,a(λ)Rba(λ+ µ)K−,b(µ)T−1

a (−λ)T−1
b (−µ)

=
[
Tb(µ)Ta(λ)Rab(λ− µ)

]
K−,a(λ)Rba(λ+ µ)K−,b(µ)T−1

a (−λ)T−1
b (−µ),

(4.3.4)

the central terms of which comprise the reflection equation, (4.3.1). Using (4.3.1)

to reverse these terms, this becomes:

... = Tb(µ)Ta(λ)K−,b(µ)Rab(λ+ µ)K−,a(λ)
[
Rba(λ− µ)T−1

a (−λ)T−1
b (−µ)

]
= Tb(µ)K−,b(µ)Ta(λ)Rab(λ+ µ)K−,a(λ)

[
T−1
b (−µ)T−1

a (−λ)Rba(λ− µ)
]

= Tb(µ)K−,b(µ)
[
Ta(λ)Rab(λ+ µ)T−1

b (−µ)
]
K−,a(λ)T−1

a (−λ)Rba(λ− µ)

= Tb(µ)K−,b(µ)
[
T−1
b (−µ)Rab(λ+ µ)Ta(λ)

]
K−,a(λ)T−1

a (−λ)Rba(λ− µ)

= RHS (4.3.1).

(4.3.5)

Because K− is still a solution of (4.3.1), the proof that the open transfer matrices

defined in (4.3.3) commute then follows by considering their product in one order (we

drop the parameter dependence of the K+ and K− matrices, as it can be implicitly

extracted from the subscript, e.g. K+,a and K−,a are functions of λ) [20, 37] (for a

diagrammatic approach, see [38]):

t̄(λ)̄t(µ) = tra
{
Kta

+,a(λ)Kta−,a(λ)
}

trb {K+,b(µ)K−,b(µ)}

= trab
{
Kta

+,aK+,bKta−,aK−,b
}

= trab

{
Kta

+,aK+,b

(
Rta
ba(λ+ µ)

)−1
Rta
ba(λ+ µ)Kta−,aK−,b

} (4.3.6)

= trab

{(
Kta

+,a

((
Rta
ba(λ+ µ)

)−1
)tb

Ktb
+,b

)tb (
K−,aRba(λ+ µ)K−,b

)ta}
.
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To continue, we make use of the identity tra {AabBab} = tra
{
AtaabB

ta
ab

}
between

partial traces and partial transpositions. After using this to move the ta from the

second bracket to the first, this is:

t̄(λ)̄t(µ) = trab

{(
Kta

+,a

((
Rta
ba(λ+ µ)

)−1
)tb

Ktb
+,b

)tab (
K−,aRba(λ+ µ)K−,b

)}

= trab

{(
Kta

+,a

((
Rta
ba(λ+ µ)

)−1
)tb

Ktb
+,b

)tab
R−1
ab (λ− µ)

×Rab(λ− µ)
(
K−,aRba(λ+ µ)K−,b

)}
(4.3.7)

= trab

{((
R−1
ab (λ− µ)

)tab Kta
+,a

((
Rta
ba(λ+ µ)

)−1
)tb

Ktb
+,b

)tab

×
(
Rab(λ− µ)K−,aRba(λ+ µ)K−,b

)}
.

The terms inside each of the brackets can be recognised as the two reflection equa-

tions, (4.3.1) and (4.3.2). After the application of these reflection equations we can

perform the same steps as above, but in reverse order, cancelling the factors of R

and R−1 by cycling them around the outside of the trace, to complete the proof.

Then, as the generators commute, so too will the coefficients in their power series,

labelled t̄(k): [̄
t(k), t̄(j)

]
= 0. (4.3.8)

To extract local quantities from this, we again consider the logarithm of t̄, labelled

Ḡ. The coefficients Ḡ(k) in the expansion of Ḡ(λ) then also commute with one

another: [
Ḡ(k), Ḡ(j)

]
= 0. (4.3.9)

Our goal is to derive a generator for the open A-matrices, labelled Ān, cor-

responding to each of the Hamiltonians generated by t̄(λ) or Ḡ(λ). We consider

the non-logarithmic version first. Just as when deriving the version with periodic

boundary conditions, we start by considering the time evolution of Ln along some
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master time-flow that incorporates all of the time-flows corresponding to each of the

Hamiltonians:

L̇bn(µ) = i
[̄
t(λ), Lbn(µ)

]
= itra

{
K+,aTa(N, n+ 1)

[
Lan(λ), Lbn(µ)

]
Ta(n− 1, 1)K−,aT

−1
a

+K+,aTaK−,aT
−1
a (n− 1, 1)

[
L−1
an (−λ), Lbn(µ)

]
T−1
a (N, n+ 1)

}
.

(4.3.10)

In order to evaluate the second commutator we need to have an expression for the

commutator with an inverse, which is:

[
L−1
an (−λ), Lbm(µ)

]
=
(
L−1
an (−λ)R̃ab(λ+µ)Lbm(µ)−Lbm(µ)R̃ab(λ+µ)L−1

an (−λ)
)
δnm,

(4.3.11)

where R̃ab(λ) = I−R−1
ab (−λ). With this, the expression above becomes:

L̇bn(µ) = itra

{
K+,aTaK−,aT

−1
a (n, 1)R̃ab(λ+ µ)T−1

a (N, n+ 1)
}
Lbn

− iLbntra
{
K+,aTa(N, n)Rab(λ− µ)Ta(n− 1, 1)K−,aT

−1
a

}
+ itra

{
K+,aTa(N, n+ 1)Rab(λ− µ)Ta(n, 1)LbnK−,aT

−1
a

}
− itra

{
K+,aTaK−,aLbnT

−1
a (n− 1, 1)R̃ab(λ+ µ)T−1

a (N, n)
}
.

(4.3.12)

While the first two terms here are reminiscent of the zero-curvature condition, the

latter two are not, as they contain an Lbn that is “trapped” in the middle of each of

them. If this were the classical case, we could simply commute it out through the

Ta or T−1
a , however, due to the non-commutativity of the fields that cannot be done

here. Instead we use the two algebraic expressions between the L-matrices, (4.1.6)

and (4.3.11), to commute the inner terms out. Obviously, when we do this we will

pick up another term that is still “trapped” between the two R-matrices, but as we

are doing this with both the third and fourth terms in the above expression we get

two such contributions, which cancel out with one another. The resulting right-hand

side then takes the form of a zero-curvature condition:

L̇bn(µ) = Ābn(λ, µ)Lbm(µ)− Lbn(µ)Ābn(λ, µ), (4.3.13)
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where we define the generator of the A-matrices in the context of open boundary

conditions as:

Ābn(λ, µ) = itra
{
K+,aTa(N, n)Rab(λ− µ)Ta(n− 1, 1)K−,aT

−1
a

}
+ itra

{
K+,aTaK−,aT

−1
a (n− 1, 1)R̃ab(λ+ µ)T−1

a (N, n)
}

− itra

{
K+,aTa(N, n)Rab(λ− µ)Ta(n− 1, 1)

× K−,aT
−1
a (n− 1, 1)R̃ab(λ+ µ)T−1

a (N, n)
}
,

(4.3.14)

or after expanding the Rab(λ) = I − Rab(λ) and the R̃ab(λ) = I − R−1
ab (−λ), this

becomes [14]:

Ābn(λ, µ) = īt(λ)I− iB̄bn(λ, µ), (4.3.15)

where we define the open equivalent of (4.1.17):

B̄bn(λ, µ) = tra {K+,a(λ)Ta(N, n;λ)Rab(λ− µ)Ta(n− 1, 1;λ)

×K−,a(λ)T−1
a (n− 1, 1;−λ)R−1

ab (−λ− µ)T−1
a (N, n;−λ)

}
.

(4.3.16)

It is important to note here that, compared to the closed version (4.1.17), this

has lost the term linear in R and instead gained a term quadratic in R. This is

because all of the information from the underlying algebra needs to be concealed

within this expression, which, in the closed case was just the commutation relations

extracted from the RLL relation, (4.1.5). In this open case on the other hand, the

reflection equations (which are quadratic in R) also need to be encoded. This is in

stark contrast to the classical results, which are both linear, but this is because they

are instead reflecting the r-dependence of the classical Poisson brackets, (2.4.5), and

the classical reflection equation, (2.3.1), both of which are linear in r.

At each of the boundaries we make use of how T (a, b) = I for b > a to find the

two boundary B-matrix generators, which are used in (4.3.15) to find the boundary
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A-matrix generators. At the n = N + 1 boundary, the generator is:

B̄b,N+1(λ, µ) = tra
{
K+,a(λ)Rab(λ− µ)Ta(λ)K−,a(λ)T−1

a (−λ)R−1
ab (−λ− µ)

}
,

(4.3.17)

while at the n = 1 boundary it is instead:

B̄b1(λ, µ) = tra
{
K+,a(λ)Ta(λ)Rab(λ− µ)K−,a(λ)R−1

ab (−λ− µ)T−1
a (−λ)

}
. (4.3.18)

Logarithmic Generator

Because we are interested in the local quantities extracted from the logarithmic

generator G(λ) we need to find a logarithmic analogue of (4.3.15). Just as the non-

commutativity was a potential problem in the closed case, so too must we be careful

here, and so we again simply define it using the logarithm of B̄bn:

Ābn(λ, µ) = iḠ(λ)I− iln
(
B̄bn(λ, µ)

)
. (4.3.19)

As we shall see this provides the correct classical limit. In order to prove that this

logarithm is well defined (that is, that the different B̄(k)
bn commute with one another),

we define a term in analogy to the proof in (4.3.4):

K−,ab(λ, µ) = Ta(N, n;λ)Rab(λ− µ)Ta(n− 1, 1;λ)K−,a(λ)

× T−1
a (n− 1, 1;−λ)R−1

ab (−λ− µ)T−1
a (N, n;−λ),

(4.3.20)

which can be shown to be a solution of the reflection equation, (4.3.1), through the

same method as in (4.3.4), except with additional applications of the Yang-Baxter

equation, (4.1.3). The task then becomes proving that:

[
tra {K+,a(µ)K−,ac(µ, λ)} , trb {K+,b(ξ)K−,bc(ξ, λ)}

]
= 0, (4.3.21)

which is simply a repeat of the fact that the open transfer matrices commute, as

proven in (4.3.6).
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Classical Limits

The classical limit we consider for these two generators is the same as from Section

4.1, Rab(λ)→ I+ i~rab(λ) + ... (which also implies that R−1
ab (λ)→ I− i~rab(λ) + ...)

and Lan → ~Lan. Again, the first thing to check is the limit of B̄bn:

B̄bn(λ, µ)→ t̄(λ)I + i~
(
tra
{
K+,aTa(N, n)rab(λ− µ)Ta(n− 1, 1)K−,aT

−1
a (−λ)

}
− tra

{
K+,aTaK−,aT

−1
a (n− 1, 1;−λ)rab(−λ− µ)T−1

a (N, n;−λ)
} )

+ ...,

(4.3.22)

so that the limit of the non-logarithmic A-matrix generator, (4.3.15), is:

Ābn(λ, µ)→ ~
(
tra
{
K+,aTa(N, n)rab(λ− µ)Ta(n− 1, 1)K−,aT

−1
a (−λ)

}
− tra

{
K+,aTaK−,aT

−1
a (n− 1, 1;−λ)rab(−λ− µ)T−1

a (N, n;−λ)
} )

+ ...,

(4.3.23)

which matches the expected result. Similarly for the logarithmic generator, we need

to expand the logarithm of this:

Ābn(λ, µ)→ ~t̄−1(λ)
(
tra
{
K+,aTa(N, n)rab(λ− µ)Ta(n− 1, 1)K−,aT

−1
a (−λ)

}
− tra

{
K+,aTaK−,aT

−1
a (n− 1, 1;−λ)rab(−λ− µ)T−1

a (N, n;−λ)
} )

+ ...,

(4.3.24)

which is also in line with our expectations of (2.6.9).
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4.4 Examples of Open A-Matrices

Heisenberg Spin Chain

We start with the example of the Heisenberg spin chain again. For the XXX model3,

the general K-matrix solutions are [22]:

K
(XXX)
− (λ) =

α− + λδ− λβ−

λγ− α− − λδ−

 ,

K
(XXX)
+ (λ) =

α+ + iδ+ + λδ+ iβ+ + λβ+

iγ+ + λγ+ α+ − iδ+ − λδ+

 .

(4.4.1)

The first two terms in the expansion of the double-row transfer matrix are:

t̄(XXX,0) = 2i2Nα+α−,

t̄(XXX,1) = 4i2N−1α+α−

(
N−1∑
m=1

Jm,m+1 +
1

2

)
+ 2i2Nα−

(
β+J

+
N + γ+J

−
N + 2δ+J

z
N

)
+ 2i2Nα+

(
β−J

+
1 + γ−J

−
1 + 2δ−J

z
1

)
, (4.4.2)

which give the local Hamiltonians through the use of the logarithmic generator:

Ḡ(XXX,0) = ln
(
2i2Nα+α−

)
,

Ḡ(XXX,1) = −2i

(
N−1∑
m=1

Jm,m+1 +
1

2

)
+
β+

α+

J+
N +

γ+

α+

J−N + 2
δ+

α+

JzN

+
β−
α−

J+
1 +

γ−
α−

J−1 + 2
δ−
α−

Jz1 .

(4.4.3)

The bulk contribution from the open Hamiltonian, H̄(XXX) = i
2
Ḡ(XXX,1), is merely

double the periodic Hamiltonian, as expected. Consequently, the bulk equations of

motion will still be (4.2.6). At the boundaries, however, we pick up contributions

3The XXX R-matrix obeys a condition called “crossing unitarity”, which states that there exists
an η such that Rtaab(λ)Rtaab(−λ − η) ∝ I. When this is the case, the two K-matrices reduce to the
same solution, but with the spectral parameter in K+ shifted by a factor of η. For this model, the
choice of η is η = i.
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from the boundary fields, so that at n = N , they are:

∂tJ
z
N = iJ−N

(
iγ+

2α+

+ J+
N−1

)
− iJ+

N

(
iβ+

2α+

+ J−N−1

)
,

∂tJ
+
N = 2iJ+

N

(
iδ+

2α+

+ JzN−1

)
− 2iJzN

(
iγ+

2α+

+ J+
N−1

)
,

∂tJ
−
N = −2iJ−N

(
iδ+

2α+

+ JzN−1

)
+ 2iJzN

(
iβ+

2α+

+ J−N−1

)
,

(4.4.4)

while at the n = 1 boundary they are:

∂tJ
z
1 = iJ−1

(
J+

2 +
iγ−
2α−

)
− iJ+

1

(
J−2 +

iβ−
2α−

)
,

∂tJ
+
1 = 2iJ+

1

(
Jz2 +

iδ−
2α−

)
− 2iJz1

(
J+

2 +
iγ−
2α−

)
,

∂tJ
−
1 = −2iJ−1

(
Jz2 +

iδ−
2α−

)
+ 2iJz1

(
J−2 +

iβ−
2α−

)
.

(4.4.5)

We now turn to deriving the A-matrices associated to the system at its bound-

aries. Just as the Hamiltonian is the same in the bulk, the A-matrices in the

bulk agree with (4.2.28). Consequently, we only discuss here the boundary matri-

ces, A
(XXX)
N+1 and A

(XXX)
1 , which first need the B-matrices found using (4.3.17) and

(4.3.18). It will be useful to write the K-matrices more compactly by defining:

K± =
i

2α±

δ± β±

γ± −δ±

 , (4.4.6)

so that the B-matrices are:

B̄(XXX,0)
N+1 = B̄(XXX,0)

1 = −2(1 + λ2)i2Nα+α−I,

B̄(XXX,1)
N+1 = B̄(XXX,0)

N+1

(
Ḡ(XXX,1) − 2

1 + λ2

(
λ
[
JN ,K+

]
+ i(K+ + JN − JNK+JN)

))
,

B̄(XXX,1)
1 = B̄(XXX,0)

1

(
Ḡ(XXX,1) − 2

1 + λ2

(
λ[K−, J1] + i(J1 + K− − J1K−J1)

))
.

(4.4.7)

Using these with (4.1.20), we can now derive the A-matrices for each of these
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boundary cases:

Ā(XXX,0)
N+1 = Ā(XXX,0)

1 = −iln
(
−1− λ2

)
I,

Ā(XXX,1)
N+1 =

2i

1 + λ2

(
λ
[
JN ,K+

]
+ i(K+ + JN − JNK+JN)

)
,

Ā(XXX,1)
1 =

2i

1 + λ2

(
λ[K−, J1] + i(J1 + K− − J1K−J1)

)
,

(4.4.8)

so that the A-matrices for the XXX model at the boundaries are found by scaling

these by i
2
:

Ā
(XXX)
N+1 =

−1

1 + λ2

(
λ
[
JN ,K+

]
+ i(K+ + JN − JNK+JN)

)
,

Ā
(XXX)
1 =

−1

1 + λ2

(
λ[K−, J1] + i(J1 + K− − J1K−J1)

)
.

(4.4.9)

By comparing these with the periodic A-matrix, (4.2.28), we can see that the

introduction of open boundary conditions to the model only manifests as replacing

JN+1 and J0 (which due to the periodic boundary conditions were identified with

J1 and JN respectively) with the constant matrices K+ and K−, respectively. The

boundary equations, (4.4.4) and (4.4.5), can be related to the bulk equations, (4.2.7),

by the same substitution.

Quantum Ablowitz-Ladik

When considering the periodic qAL model we needed to consider both limits λ →

±∞ in order to find the Hamiltonian and A-matrix. In the case of open boundary

conditions however, the results from the two limits will be the same, so we need only

consider one of them. We choose the λ→ +∞ limit.
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The K-matrices extracted from (4.3.1) and (4.3.2) with the qAL R-matrix4 are5:

K
(qAL)
− (λ) =

eλ + α−e−λ 0

0 α−eλ + e−λ

 ,

K
(qAL)
+ (λ) =

q2eλ + q−2α+e−λ 0

0 q2α+eλ + q−2e−λ

 .

(4.4.10)

Before we can expand t̄(λ) and Ḡ(λ) we first need to find the inverse of Lan(λ) for

calculating T−1
a (−λ):

L−1
an (−λ) = vn

qeλ bn

an −q−1e−λ

 . (4.4.11)

Using these, the first two non-trivial terms in the expansion of the transfer matrix

in the limit as λ → ∞ are (like in the periodic case, the terms with odd powers of

λ will all be trivial):

t̄(qAL,0) = qN+2v2
N ...v

2
1,

t̄(qAL,2) = qNv2
N ...v

2
1

(
q
N−1∑
n=1

(qbn+1an + q−1an+1bn)

+ q(qα−b1a1 + q−1α+aNbN) + (q−2α+ + q2α−)
)
,

(4.4.12)

so that the corresponding two terms in the expansion of Ḡ(λ) are:

Ḡ(qAL,0) = 2
N∑
n=1

ln (vn) + (N + 2)ln (q) ,

Ḡ(qAL,2) = q−1

N−1∑
n=1

(qbn+1an + q−1an+1bn) + q−1(qα−b1a1 + q−1α+aNbN)

+ (q−4α+ + α−).

(4.4.13)

4Like the XXX R-matrix, this also satisfies crossing unitarity, but with η = 2ln (q).
5Note that there are actually two distinct choices of K-matrices, those given in (4.4.10) and a

constant anti-diagonal version, K±(λ) =
(

0 1
α± 0

)
. We choose to only consider the diagonal version

to make the comparisons with the classical case (where only the diagonal version exists) apparent.
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Removing the constant term from Ḡ(qAL,2) and multiplying by a factor of q, this is

the open Hamiltonian for the qAL model:

H̄(qAL) =
N−1∑
n=1

(qbn+1an + q−1an+1bn) + (qα−b1a1 + q−1α+aNbN). (4.4.14)

This should be compared against the closed Hamiltonian, (4.2.15). In the bulk, the

non-periodic boundary conditions have no effect on the Hamiltonian, so we will only

provide the evolution equations for the boundary terms.

At n = N , the equations of motion take the form [34]:

∂taN = i(1− q2)v−2
N (aN−1 + α+aN),

∂tbN = i(1− q−2)v−2
N (bN−1 + α+bN),

∂tvN = i
(
(q−1 − 1)aNbN−1 + (q − 1)bNaN−1

)
vN ,

(4.4.15)

while at the n = 1 boundary, they are:

∂ta1 = i(q−2 − 1)(a2 + α−a1)v−2
1 ,

∂tb1 = i(q2 − 1)(b2 + α−b1)v−2
1 ,

∂tv1 = iv1

(
(1− q−1)a2b1 + (1− q)b2a1

)
.

(4.4.16)

We now turn to finding the B-matrices for the open version of this model, with

the goal of finding the A-matrix. Due to the bulk A-matrices being the same as

their periodic versions, we only derive here the boundary terms, Ā
(qAL)
N+1 and Ā

(qAL)
1 .
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The first two non-trivial B-matrices at each boundary are:

B̄(qAL,0)
N+1 = B̄(qAL,0)

1 = qN+2v2
N ...v

2
1

q2 0

0 1

 ,

B̄(qAL,2)
N+1 = B̄(qAL,0)

N+1

Ḡ(qAL,2) − (e2λ + e−2λ)

q−2 0

0 1



+(1− q−2)

 −α+bNaN q−1bN(α+eλ + e−λ)

qaN(eλ + α+e−λ) α+aNbN

 ,

B̄(qAL,2)
1 = B̄(qAL,0)

1

Ḡ(qAL,2) − (e2λ + e−2λ)

q−2 0

0 1



+(1− q−2)

 −α−b1a1 b1(eλ + α−e−λ)

a1(α−eλ + e−λ) α−a1b1

 .

(4.4.17)

We can then use these to find the corresponding A-matrices via (4.1.20):

Ā(qAL,0)
N+1 = Ā(qAL,0)

1 = −2iln (q)

1 0

0 0

 ,

Ā(qAL,2)
N+1 = iq−1Λq − i(1− q−2)

 −α+bNaN q−1bN(α+eλ + e−λ)

qaN(eλ + α+e−λ) α+aNbN

 ,

Ā(qAL,2)
1 = iq−1Λq − i(1− q−2)

 −α−b1a1 b1(eλ + α−e−λ)

a1(α−eλ + e−λ) α−a1b1

 ,

(4.4.18)

where we define an additional matrix Λq as:

Λq = (e2λ + e−2λ)

q−1 0

0 q

 . (4.4.19)

Multiplying the latter two of the above A-matrices by q, as we did for the open
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Hamiltonian, (4.4.14), we find the boundary A-matrices for the qAL model:

Ā
(qAL)
N+1 = iΛq − i(q − q−1)

 −α+bNaN q−1bN(α+eλ + e−λ)

qaN(eλ + α+e−λ) α+aNbN

 ,

Ā
(qAL)
1 = iΛq − i(q − q−1)

 −α−b1a1 b1(eλ + α−e−λ)

a1(α−eλ + e−λ) α−a1b1

 .

(4.4.20)

Using these matrices in the zero-curvature condition gives the same boundary equa-

tions as the Hamiltonian did, (4.4.15) and (4.4.16).
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Conclusions

The primary goal of this thesis has been to emphasise the connection between

the various integrable hierarchies that can be constructed through the Lax/zero-

curvature representation. In the continuous case, we can build the usual classical

hierarchy with equal-time Hamiltonians, as done in Sections 2.1-2.3, or we can build

the dual hierarchy with equal-space “Hamiltonians”, as done in Chapter 3. In the

discrete setting, we have walked through both the classical hierarchy in Sections

2.4-2.6, as well as the quantum analogue of this, that is, a hierarchy of quantum

spin chains sharing a common Lax matrix, which was done in Chapter 4.

In each of these settings we have systematically constructed both the conserved

quantities (conserved with respect to space evolution in the dual description of

the continuous case, and time evolution otherwise) and the missing component of

the Lax pair in both the cases of closed (periodic) and open (reflective) boundary

conditions. The parallels between the various settings are made more evident by

working with equivalent models as examples for each of these.

Following Chapter 2 (which consisted of known results and methodology, see e.g.

[9], described here to contrast the later chapters against), we first focussed on contin-

uous models, and how they can be described in terms of their space-evolution. This

idea has been applied to the non-linear Schrödinger (NLS) model (in scalar [12], vec-

tor [39], and matrix [11] forms), the NLS hierarchy [13], the isotropic Landau-Lifshitz

(HM) model [10], and the sine-Gordon model [40], and leads to the introduction of

spatially conserved quantities and equal-space Poisson brackets, which make use of
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the equal-space Hamiltonians to describe the space-evolution. The core underlying

object here is the classical r-matrix, which, along with some seed Lax matrix, al-

lows a hierarchy of Lax pairs to be extracted by generating the missing components.

Then, by switching which component of the Lax pair we use as the seed matrix,

we can use the same r-matrix to build a hierarchy of Lax pairs with a common

V -matrix (assuming we started with a seed U -matrix originally). As the r-matrix

is shared amongst all of these Poisson structures and choices of Lax matrices (as

discussed in Appendix A), we view this as the fundamental object1.

This means that starting from a Lax matrix (chosen here to be U) and an r-

matrix, we generate a hierarchy of V -matrices. Then, combining each of those

V -matrices with the r-matrix, we generate new hierarchies of U -matrices, which can

each be used to generate their own tower of V -matrices, and so on. Diagrammati-

cally, with A =⇒ B−C− ... denoting that A is used with the r-matrix to generate

the tower of Lax matrices containing B and C (the r-matrices are not written down,

due to being shared across the whole diagram):

U V0 V1 V2 . . .

U00 V000 . . . U10 V100 . . . U20 V200 . . .

...
...

...

U01 V010 . . . U11 V110 . . . U21 V210 . . .

...
...

...

...
...

...
(5.1.1)

1 Due to the Lax matrix and r-matrix being related through the Poisson bracket relations,
(2.1.8) or (3.1.4), it can suffice to only have one of the two. As a given choice of Lax matrix
will usually have a unique (up to suitable transformations) r-matrix, and that the Lax matrix
is directly connected to the Hamiltonian (through the hierarchy of conserved quantities) and the
equations of motion (through the other component of the Lax pair), it may seem more natural to
call the Lax matrix the fundamental object.

In the sense that using only the Lax matrix as the sole input datum, we can derive the r-matrix
and with it the full hierarchies of both equal-space and equal-time, it is indeed more fundamental.
However, if we move on to consider systems higher up in the equal-space–equal-time “lattice”
then this original Lax matrix is swiftly forgotten as we work with ever more complicated Lax
pairs, whereas the r-matrix remains ever present. We therefore choose to view the r-matrix as the
common core of this whole construction.
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The equal-time and equal-space hierarchies do not a priori commute (e.g. the

Lax pair (U00, V000) is not necessarily equivalent to the pair (U10, V1) in the diagram

above, despite both of these points being reached by going right once and down once

from the point labelled V0), so the diagram above keeps the “branches” separate.

However, in the case where the two hierarchies do commute (which has been shown

to be true for both the NLS and HM models at the lower orders of their hierarchies

[10]), the diagram can be drawn more compactly:

j
...

...
...

2 (U0, V2) (U1, V2) (U2, V2) . . .

1 (U0, V1) (U1, V1) (U2, V1) . . .

0 (U0, V0) (U1, V0) (U2, V0) . . .

0 1 2 i

(5.1.2)

Each node in this diagram represents a particular set of equations, defined in terms

of the Lax pair (Ui, Vj). For example, if the HM U -matrix is used as U0 and V0,

then the equations of motion (1.1.2) lie at the point (i, j) = (0, 1) (as the HM V -

matrix appears as the second term in the expansion of the Semenov-Tian-Shansky

formula, (2.2.20)), and the higher system discussed in Section 3.3 is at the point

(i, j) = (2, 1).

This raises the evident question of whether it can be shown that for any system

these equal-time and equal-space constructions do commute in general, or what the

conditions of the non-commutativity are. An important consideration in this is

whether the problem is being discussed at the level of the equations of motion or

at the level of the Lax pair, as the Lax pair for a given system of equations is not

unique. A detailed analysis of this problem is left as an open question.

The higher order systems discussed in Section 3.3 look to present a plethora of

new and potentially interesting integrable models. Of particular interest are the
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connections between these models and the known models that they are built from.

One key difference between the models is the number of fields it contains, for example

the higher order models given in Section 3.3 are both written in terms of twice as

many fields as their underlying equations had (i.e. the higher NLS equations were

written in terms of ψ, ψ̄, φ, and φ̄, whereas NLS is only written using ψ and ψ̄). By

explicitly writing in the dependence on the different space-flows, these can instead

be written using the same fields, but with an additional spatial parameter (i.e. as

(2+1)-dimensional equations rather than (1+1)-dimensional equations):

ψy = −ψxt − 2ψ(ψ̄ψx − ψψ̄x),

ψ̄y = ψ̄xt + 2ψ̄(ψ̄ψx − ψψ̄x),

ψxy = ψtt − 2ψt|ψ|2 − 2ψx(ψ̄ψx − ψψ̄x),

ψ̄xy = ψ̄tt + 2ψ̄t|ψ|2 + 2ψ̄x(ψ̄ψx − ψψ̄x),

(5.1.3)

where we use x to denote the original NLS space-flow and y to denote the new order

4 space flow. Alternatively, because the lowest order V -matrices for both the NLS

and HM models coincide with their U -matrices, we can interchange the roles of the

space and time coordinates in the equations of motion (by reflecting our position in

(5.1.2) about the i = j line) to get more traditional time-evolution equations:

ψ̇ = −φ′ − 2ψ(ψ̄φ− ψφ̄),

˙̄ψ = φ̄′ + 2ψ̄(ψ̄φ− ψφ̄),

φ̇ = ψ′′ − 2ψ′|ψ|2 − 2φ(ψ̄φ− ψφ̄),

˙̄φ = ψ̄′′ + 2ψ̄′|ψ|2 + 2φ̄(ψ̄φ− ψφ̄).

(5.1.4)

Because these systems lie in the hierarchy of integrable models with known soli-

tonic solutions, they should also accept solitonic solutions of a similar form, and a

study of the solutions of these higher equations, as well as the relationship any such

solutions would have with the original NLS and HM equations, would be a fruitful

avenue of investigation.
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In Chapter 3 we also studied the introduction of integrable reflective boundary

conditions to the time axis for both the NLS and HM models. While seemingly

unphysical, such boundary conditions could have applications as a particular type

of initial condition for the system, where the time coordinate is considered on the

half-line, [0,∞), instead. Thus, the boundary conditions discussed in Chapter 3

would appear as a particular set of initial conditions that settle, for example, into a

2-soliton solution.

Having both spatial and temporal boundary conditions, an interesting study

would be the question of how these interact at the corners of the space-time region

considered. By taking the t → ±τ limit of (2.3.17) and the x → ±L limit of

(3.4.13), for example, the compatibility of these boundary conditions tells us that

ψ′ ∝ ψ̄′ at each of the four corners. The proportionality constant is given in terms

of the constants β+ and γ− from the temporal boundary conditions, (3.4.13). A full

analysis of this, however, is left for future consideration.

The other key result of this thesis is the derivation of an analogue of the discrete

classical Semenov-Tian-Shansky formula, (2.5.14), for quantum spin chains in the

case of both periodic, (4.1.16), and reflective, (4.3.15), boundary conditions. This

was used to generate the appropriate hierarchies of A-matrices for both the XXX

Heisenberg spin chain and the quantum Ablowitz-Ladik model, which show the

agreement between our formula and the expected results (at the level of the evolution

equations).

Due to their general construction, the derived formulae can be applied to any

quantum spin chain which accepts an R-matrix description. It is left for future work,

however, to extract the hierarchy of A-matrices for other systems.

The Lax pair A-matrices have previously been a primarily classical concern, so

their introduction at the quantum level will allow some of the classical techniques

to be applied in this quantum setting. One example of such would be Darboux-

Bäcklund transformations, as introduced in this picture in [14], which are used

classically to generate solutions to PDEs, or as a description of discrete time evo-
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lution. Quantum Darboux-Bäcklund transformations have been considered before,

see for example [41, 42], but in previous works only their spatial components have

been discussed, due to the lack of the temporal component. The consequences and

application of such techniques is left for future work.

The construction of the auxiliary linear problem at the quantum level is con-

nected to the concept of a quantum analogue of the Gelfand-Levitan-Marchenko

(GLM) equation [9, 43]. This in turn leads to the potential for some quantum

Zakharov-Shabat style dressing procedure [44, 45]. A non-commutative GLM equa-

tion has been constructed in [46] in the context of the classical matrix NLS model.

All of the models discussed in this thesis have been ultra-local, that is, the Poisson

brackets (or commutators) have depended only on δ(x− y) (or δnm). Consequently,

it would be of great interest to see if the constructions in this thesis, the equal-space

hierarchy and quantum auxiliary linear problem, would be applicable to non-ultra-

local models, such as the real Korteweg-de Vries system (either as a continuous

model or a quantum lattice [47]), where the Poisson brackets/commutators depend

on δ′(x− y) or δn,m+1.

This would require the introduction of some Maillet term [48] to the algebraic

relations providing the Poisson brackets or commutators, (2.1.8), (2.4.5), and (4.1.6).

For dual systems, it remains an open question as to whether, if the dual construction

can be applied to non-ultra-local models, the dual construction would retain the

non-ultra-locality.

86



Appendix A

The Poisson Hierarchy for the

Anisotropic Landau-Lifshitz Model

In this appendix we change our focus to the anisotropic Landau-Lifshitz (LL) equa-

tion [49, 17] in place of either the non-linear Schrödinger (NLS) or isotropic Landau-

Lifshitz (HM) models of Chapter 3 which this appendix branches out from. The

reason for doing this is so that we may develop a more general result, and can then

focus this down to compare against the Poisson structures in Chapter 2 and the dual

Poisson structures in Chapter 3. Consequently, Section A.1 is dedicated to briefly

introducing this model and how it relates to the NLS and HM models.

Having introduced the relevant quantities, we turn to the problem at hand in

Section A.2, where we derive a general expression for the Poisson brackets found for

any given system in not just the standard hierarchy, but also for any system that

can be found by alternating the equal-space and equal-time hierarchies. Section A.3

then connects this to the results from Chapters 2 and 3 and makes some closing

comments.

A.1 The Anisotropic Landau-Lifshitz Model

The LL model is the set of three equations [49]:

~̇S =
i

c2
~S × ~S ′′ + i~S × (J ~S), (A.1.1)
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where ~S(x, t) = (Sx, Sy, Sz)
T is a vector containing the three fields and the 3×3

matrix J = diag(Jx, Jy, Jz) contains the parameters that determine the anisotropy,

with Jx < Jy < Jz. Throughout this appendix, we will use an i, j, or k subscript to

denote an element of {x, y, z} (e.g. Si can be any of Sx, Sy, or Sz). These anisotropy

parameters appear in the Lax pair and r-matrix in the form:

ρ =
1

2

√
Jz − Jx, k =

√
Jy − Jx
Jz − Jx

, (A.1.2)

which, due to the ordering of the Ji are required to obey ρ > 0 and 0 < k < 1.

The Lax pair and r-matrix for this model are written in terms of the Jacobi

elliptic functions cs(λ, k), ds(λ, k), and ns(λ, k) (see [50] for useful properties and

identities). There are Lax pairs with simpler dependences on λ, e.g. linear [51],

however these involve matrices larger than 2×2, so we choose to work with the

elliptic versions.

We will drop the dependence on k throughout to keep things compact, and the

λ parameter will also be omitted when it can be inferred from context. The Lax

pair for this system can then be written [17, 52]:

U(λ) = iρ

 Szcs Sxns− iSyds

Sxns + iSyds −Szcs

 ,

V (λ) = 2ρ2

 Szds ns Sxcs ds− iSycs ns

Sxcs ds + iSycs ns −Szds ns



+ ρ

 Lzcs Lxns− iLyds

Lxns + iLyds −Lzcs

 ,

(A.1.3)

where:

Li =
1

c2

∑
j,k∈{x,y,z}

S ′jSkεijk, (A.1.4)

with εijk being the antisymmetric Levi-Civita tensor, normalised so that εxyz = +1.
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The associated r-matrix is:

r(λ) =
iηρ

2


cs 0 0 ns− ds

0 −cs ns + ds 0

0 ns + ds −cs 0

ns− ds 0 0 cs

 . (A.1.5)

Combining this with the U -matrix in the equal-time linear algebraic relation, (2.1.8),

gives an equal-time Poisson bracket of su2 type:

{Si(x1), Sj(x2)}S = −iηSkεijk δ(x1 − x2), (A.1.6)

while combining the r-matrix with the V -matrix in the equal-space version, (3.1.4),

gives a Poisson structure of special Euclidean SE(3) type (i.e. describing translations

Si and rotations Li in 3 dimensions):

{Li(t1), Lj(t2)}T = Lkεijk δ(t1 − t2),

{Li(t1), Sj(t2)}T = Skεijk δ(t1 − t2),

{Si(t1), Sj(t2)}T = 0,

(A.1.7)

These Poisson structures are equivalent to those for the isotropic version pre-

sented in Chapters 2 and 3.

A.1.1 Limits

In order to connect this with the results in Chapters 2 and 3, we provide here the

limits that take this model to the NLS and HM models [17].

Isotropic Landau-Lifshitz

As the name might imply, the HM model can be found by considering the isotropic

limit of the LL model, that is, where Jx → Jy → Jz (or ρ, k → 0), so that the

anisotropic component of the equations of motion, (A.1.1), vanishes. We also set

η = 1 and λ→ 2iλρ for the conventions to match up.
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As this limit leaves the fields unchanged, the standard and dual Poisson struc-

tures above are preserved in the limit.

Non-linear Schrödinger

To extract the NLS model from the LL model, we need a more delicate limit than

for the HM model, where we allow a partial anisotropy, Jy → Jx, Jz = Jx − 1
η

(or

ρ = i
2
√
η

and k → 0). Then, c is set to c = 1 and the fields Si are replaced with

combinations of the NLS fields, ψ and ψ̄ through:

Sx =
√
η
(
e−t/ηψ + et/ηψ̄

)
, Sy = −i

√
η
(
e−t/ηψ − et/ηψ̄

)
,

Sz =
√

1− 4η|ψ|2.
(A.1.8)

Finally, the limit η → 0 is taken.

A.2 The Hierarchy of Poisson Structures

The goal of this appendix is to establish that each system of equations in the hi-

erarchy of integrable equations associated to the anisotropic Landau-Lifshitz model

admits a Poisson structure. Specifically that the Semenov-Tian-Shansky formula

[6], (2.2.20), can be applied to each of the V -matrices (along with (A.1.5) as the

r-matrix) generated from the U -matrix, and similarly for each of the U -matrices

generated by the V -matrices (and so on). Thus, not only will each of the systems in

the standard equal-time hierarchy admit such, but in fact every system of equations

that can be extracted from alternating the equal-space and equal-time pictures will

admit Poisson structures too.

Throughout the following calculations we focus on the standard equal-time pic-

ture (i.e. generating V -matrices from U -matrices), which means that all of the

derived Poisson brackets will be dual Poisson brackets in the sense of Chapter 3.

The calculations and results are identical however for the dual (equal-space) picture,

so we merely quote the equivalent result at the end.

The first step in this is to determine the form of any Lax matrices generated by

the Semenov-Tian-Shansky formula (2.2.20) (or (3.2.18) for the dual case).
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A.2.1 The Form of the Lax Matrix

The V -matrices are generated from the U - and r-matrices for the system by (2.2.20):

Vb = t−1(µ) tra {Ta(L, x;µ)rab(µ− λ)Ta(x,−L;µ)} . (A.2.1)

This was handled in Section 2.2 by decomposing the monodromy matrices T into

a combination of W - and Z-matrices. Then, as the W -matrices are wholly anti-

diagonal, where we label its two non-zero components as w12 and w21, after splitting

the monodromy matrices with the diagonalisation (2.2.5), the V -matrix generator

can be written as:

Vb =
1

1− w12(µ)w21(µ)
tra

rab(µ− λ)

 1 −w12(µ)

w21(µ) −w12(µ)w21(µ)


a

 . (A.2.2)

Explicitly evaluating this, we get:

V =
iηρ

2(1− w12w21)

 (1 + w12w21)cs (w21 − w12)ns− (w21 + w12)ds

(w21 − w12)ns + (w21 + w12)ds −(1 + w12w21)cs

 .

(A.2.3)

Thus, the generator of the V -matrices (or U -matrices in the dual case) can be written

in the form:

V(λ, µ) =

 Vz(λ, µ) Vx(λ, µ)− iVy(λ, µ)

Vx(λ, µ) + iVy(λ, µ) −Vz(λ, µ)

 . (A.2.4)

Due to the association of cs with the z-component, ns with the x-component,

and ds with the y-component, we define psx = ns, psy = ds, and psz = cs so that

the results can be combined into one.

A.2.2 The Linear Algebraic Relation

As we want to find the Poisson structure for each of these V -matrices, we need to

consider the dual algebraic relation (3.1.4) (we suppress the time dependence and

trailing Dirac delta function to keep the expression compact):

{Va(λ1, µ),Vb(λ2, µ)}T = [rab(λ1 − λ2),Va(λ1, µ) + Vb(λ2, µ)]. (A.2.5)
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Evaluating this using (A.1.5) and (A.2.4), we get:

{Vi(λ1, µ),Vj(λ2, µ)}T = ηρ
(
psi(λ1 − λ2)Vk(λ2, µ)− psj(λ1 − λ2)Vk(λ1, µ)

)
εijk.

(A.2.6)

In reference to (A.2.3), we can separate the dependence on λ in each of these by

defining:

Vi(λ, µ) = −ηρSi(µ)psi(µ− λ). (A.2.7)

It will be useful in what follows to compact the elliptic functions by writing psi,jk =

psi(λj − λk) with λ0 = µ. Then, as we want to focus on the system at a specific

order in the hierarchy (labelled n), the Poisson brackets for the generating Vi in

(A.2.6) become:

0 =

{
1

n!
∂nµ
(
psi,01Si(µ)

)
,

1

n!
∂nµ
(
psj,02Sj(µ)

)}
T

∣∣∣∣
µ=0

+

(
1

n!
psi,12∂

n
µ

(
psk,02Sk(µ)

)
− 1

n!
psj,12∂

n
µ

(
psk,01Sk(µ)

))∣∣∣∣
µ=0

εijk,

(A.2.8)

where we have used derivatives with respect to µ to pick out the term in the hier-

archy that we are interested in. After evaluating the derivatives, with a bracketed

superscript (n) denoting the nth term in the power series expansion with respect to

µ, this becomes:

0 =
n∑

p,q=0

1

n!

(
n

p

)(
n

q

)
ps

(n−p)
i,01 ps

(n−q)
j,02 {S

(p)
i ,S(q)

j }T

+
n∑
p=0

(
n

p

)
(psi,12ps

(n−p)
k,02 − psj,12ps

(n−p)
k,01 )S(p)

k εijk.

(A.2.9)

The elliptic functions can be shown to satisfy the following identity:

0 = ns(a− b)ds(a− c) + cs(c− a)ds(c− b) + cs(b− a)ns(b− c), (A.2.10)

which, if we differentiate (n − p) times with respect to λ0 = µ and convert to our
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notation (with i, j, k distinct) gives us:

psi,12ps
(n−p)
k,02 − psj,12ps

(n−p)
k,01 = −

n−p∑
q=0

(
n− p
q

)
ps

(n−p−q)
j,01 ps

(q)
i,02. (A.2.11)

We can use this in (A.2.9) to make every term depend on psi,01 and psj,02 and no

other elliptic functions:

0 =
n∑

p,q=0

1

n!

(
n

p

)(
n

q

)
ps

(n−p)
i,01 ps

(n−q)
j,02 {S

(p)
i , S(q)

j }T

−
n∑
q=0

n∑
p=n−q

(
n

p+ q − n

)(
2n− q − p
n− q

)
ps

(n−p)
j,01 ps

(n−q)
i,02 S(p+q−n)

k εijk.

(A.2.12)

We can therefore split these expressions about their elliptic function dependence to

get two sets of results (where n is the order of the system you are considering and

p and q lie in [0, n] and supply you with the (n + 1)2 Poisson brackets between the

(n+ 1) fields):

{S(p)
i ,S(q)

j }T =


p!q!

(p+q−n)!
S(p+q−n)
k εijk p+ q ≥ n,

0 p+ q < n.
(A.2.13)

In order to state this more cleanly, we redefine the fields one last time, where

instead of the components S(p)
i we define the fields in the system at order n as:

S
(n,p)
i =

1

(n− p)!
S(n−p)
i , (A.2.14)

so that the Poisson brackets in (A.2.13) become:

{S(n,p)
i (t1), S

(n,q)
j (t2)}T =

S
(n,p+q)
k εijk δ(t1 − t2) p+ q ≤ n,

0 p+ q > n.
(A.2.15)

Thus, each Poisson structure in the hierarchy of such for the anisotropic Landau-

Lifshitz model has the form of a graded Lie algebra with an su2-like form.

In the dual picture where we use the underlying V -matrix to generate a hier-

archy of U -matrices and then wish to find the equal-time brackets for each of the

corresponding systems, the above calculation proceeds exactly the same, with the
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equivalent of (A.2.15) being:

{S(n,p)
i (x1), S

(n,q)
j (x2)}S =

S
(n,p+q)
k εijk δ(x1 − x2) p+ q ≤ n,

0 p+ q > n.
(A.2.16)

In the discussion below we drop the S or T subscript from the bracket, as the

results are equivalent in the two cases.

A.3 Comments and Examples

In analogy to how the standard and dual algebras in (A.1.6) and (A.1.7) have one

and two Casimir elements respectively (c2 =
∑

i S
2
i for (A.1.6) and both c2 and

c̃2 =
∑

i LiSi for (A.1.7)), we can find (n+ 1) such constants for the Poisson algebra

at order n in the hierarchy (indexed by 0 ≤ r ≤ n):

cn,r =
∑
i

r∑
p=0

S
(n,n−p)
i S

(n,n+p−r)
i . (A.3.1)

By inspection we can see that this coincides with our known Casimir elements as

c2 = cn,n and c̃2 = 1
2
cn,n−1, where we are recognising Si = S

(n,n)
i and Li = S

(n,n−1)
i .

To see that this is a Casimir we consider the Poisson bracket of this with S
(q)
j (we

drop the factors of δ and the n superscripts to clean the expressions a little bit):

{cn,r, S(q)
j } =

∑
i

r∑
p=0

{S(n−p)
i S

(n+p−r)
i , S

(q)
j }

=
∑
i,k

(
r−q∑
p=0

S
(n−p)
i S

(n+p+q−r)
k +

r∑
p=q

S
(n+p−r)
i S

(n+q−p)
k

)
εijk

=
∑
i,k

r∑
p=q

(S
(n+q−p)
i S

(n+p−r)
k + S

(n+p−r)
i S

(n+q−p)
k )εijk

= 0,

(A.3.2)

where in the final step we have used the antisymmetry of the Levi-Civita tensor.
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Despite the results of this appendix depending only on the choice of n to deter-

mine the form of the Poisson structure, this result holds for any choice of underlying

Lax pair. This is because the only tool used in the derivation of the results was

the r-matrix. Consequently, as long as the underlying Lax matrix satisfies the ap-

propriate linear algebraic relation, (2.1.8), with this choice of r-matrix, then each

dual system in its hierarchy will also satisfy a linear algebraic relation with the

same r-matrix, with the choice of n in (A.2.15) depending on the order at which the

generated half of the Lax pair appears at the hierarchy.

For example, if we take the NLS limit (described below in Subsection A.3.1), then

we will find that the equal-space Poisson structure of the complex mKdV equation is

the same as the equal-time Poisson structure of the (4, 3)-NLS equations described

in Section 3.3. This is because the complex mKdV V -matrix (out of which the equal-

space brackets are built) appears at the same power of the spectral parameter as the

U -matrix (which is used to build the equal-time brackets) does for the (4, 3)-NLS

model.

A.3.1 Examples

Considering when n = 0, (A.2.15) is simply the su2 algebra, (A.1.6), which is the

standard Poisson structure for both the isotropic and anisotropic Landau-Lifshitz

models, while for n = 1 (A.2.15) becomes the SE(3) algebra, (A.1.7), which is the

dual Poisson structure for both of these models. When n = 2, we get the following

algebra (with Si = S
(2)
i , Li = S

(1)
i , and Ti = S

(0)
i ):

{Ti, Tj} = Tkεijk, {Ti, Lj} = Lkεijk, {Ti, Sj} = Skεijk,

{Li, Lj} = Skεijk, {Li, Sj} = {Si, Sj} = 0.

(A.3.3)

This has three Casimir elements:

c2,0 =
∑
i

S2
i , c2,1 = 2

∑
i

LiSi, c2,2 =
∑
i

(2TiSi + L2
i ), (A.3.4)

and is (up to a suitable choice of Si, Li, and Ti) an equal-time Poisson structure for

the higher HM system described in Section 3.3 in Chapter 3.
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NLS Limit

If we assume that each of the fields S
(n,p)
x , S

(n,p)
y can be considered of the form of

(A.1.8), that is:

S(n,p)
x =

√
η
(
e−t/ηψ(n,p) + et/ηψ̄(n,p)

)
,

S(n,p)
y = −i

√
η
(
e−t/ηψ(n,p) − et/ηψ̄(n,p)

)
,

(A.3.5)

then the appropriate Casimir elements at order n can be used to find the corre-

sponding limit for S
(n,r)
z . For r = n, this is equivalent to the limit in (A.1.8):

S(n,n)
z =

√
cn,0 − 4η|ψ(n,n)|2, (A.3.6)

while for r 6= n this leads to a recurrence relation that is close to Catalan type:

S(n,r)
z =

1

2S
(n,n)
z

(
an,r −

n−r−1∑
p=1

S(n,n−p)
z S(n,r+p)

z

)
, (A.3.7)

where:

an,r = cn,n−r −
n−r∑
p=0

(
S(n,n−p)
x S(n,r+p)

x + S(n,n−p)
y S(n,r+p)

y

)
. (A.3.8)

In the original NLS limit we chose c = 1 (i.e. cn,0 = 1), which we do again here.

However, we also need to choose cn,p = 0 for all 0 < p ≤ n, in the same way that

we worked with c̃ = 0 in the isotropic case. Then, in the limit as η → 0 these an,r

become:

an,r = −4η
n−r∑
p=0

ψ(n,n−p)ψ̄(n,r+p). (A.3.9)

The recurrence relation (A.3.7) can be solved to get a solution:

S(n,r)
z = −

n−r∑
m=1

(2m− 2)!

m!(m− 1)!

(
2S(n,n)

z

)1−2m
∑

i1,...,im=1∑
j ij=n−r

an,n−i1 ...an,n−im , (A.3.10)

however, as we only care about the order η0 and η1 terms and the an,r are linear

in η, there are no order η0 contributions from S
(n,r)
z with r < n and the order η1

contribution is:

S(n,r)
z = δrn − 2η

n−r∑
p=0

ψ(n,n−p)ψ̄(n,r+p) + .... (A.3.11)
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The resulting hierarchy of NLS Poisson structures then all take the form (noting

that due to the factor of η hidden inside (A.2.7), we need to scale the right-hand

side of (A.2.15) by η):

{ψ(n,p), ψ(n,q)} = {ψ̄(n,p), ψ̄(n,q)} = 0,

{ψ̄(n,p), ψ(n,q)} − {ψ(n,p), ψ̄(n,q)} = iδp+q,n,

{ψ(n,p), ψ̄(n,q)} =
−iψ(n,p+q)

2ψ(n,n)
−

n−q∑
m=1

ψ(n,n−m)

ψ(n,n)
{ψ(n,p), ψ̄(n,q+m)},

{ψ̄(n,p), ψ(n,q)} =
iψ̄(n,p+q)

2ψ̄(n,n)
−

n−q∑
m=1

ψ̄(n,n−m)

ψ̄(n,n)
{ψ̄(n,p), ψ(n,q+m)}.

(A.3.12)

To actually extract the Poisson brackets from these we assume that the brackets

take the form:

{ψ(n,p), ψ̄(n,q)} = b(n)
p,q −

i

2
δp+q,n, (A.3.13)

for some function b
(n)
p,q . With this assumption, the second relation tells us that

b
(n)
q,p + b

(n)
p,q = 0. The third and fourth relations then become:

b(n)
p,q =

iψ(n,p+q)

2ψ(n,n)

(
n−q∑
m=1

δp+q+m,n − 1

)
+

i

2
δp+q,n −

n−q∑
m=1

ψ(n,n−m)

ψ(n,n)
b

(n)
p,q+m,

b(n)
p,q =

iψ̄(n,p+q)

2ψ̄(n,n)

(
1−

n−q∑
m=1

δp+q+m,n

)
− i

2
δp+q,n −

n−q∑
m=1

ψ̄(n,n−m)

ψ̄(n,n)
b

(n)
p,q+m,

(A.3.14)

where the delta outside of the brackets can be taken into the summation, thus

ensuring that the bracketed terms are identically 0. Then, equating the remaining

expressions, we have:

0 =

n−q∑
m=1

(
ψ(n,n−m)

ψ(n,n)
− ψ̄(n,n−m)

ψ̄(n,n)

)
b

(n)
p,q+m. (A.3.15)

By considering successive orders of q (starting with q = n − 1) and using the fact

that ψ(n,p) and ψ̄(n,q) are independent, we can see that each of the b
(n)
p,q must be 0.

Therefore, the NLS analogue of (A.2.15), i.e. the associated hierarchy of Poisson
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brackets for the system appearing at order n in the hierarchy, are:

{ψ(n,p)(a), ψ(n,q)(b)} = {ψ̄(n,p)(a), ψ̄(n,q)(b)} = 0,

{ψ(n,p)(a), ψ̄(n,q)(b)} =
−i

2
δp+q,nδ(a− b),

(A.3.16)

where we generically use a and b for the parameters so that this result can be applied

to both the equal-space and equal-time descriptions.

Looking at the n = 0 case, we extract the usual NLS Poisson brackets (2.1.9),

labelling ψ =
√

2iψ(0,0) and ψ̄ =
√

2iψ̄(0,0):

{ψ(a), ψ̄(b)} = δ(a− b). (A.3.17)

If we instead consider the n = 1 case, labelling ψ = ψ(1,0), ψ̄ = ψ̄(1,0), φ = −2iψ(1,1),

φ̄ = 2iψ̄(1,1), we re-derive the dual Poisson structure for NLS, (3.1.5):

{ψ, φ} = {ψ̄, φ̄} = {ψ, ψ̄} = {φ, φ̄} = 0,

{ψ(a), φ̄(b)} = {ψ̄(a), φ(b)} = δ(a− b).
(A.3.18)

Finally, by looking at the n = 2 case we can find equal-space Poisson brackets

for the complex mKdV equation, or equal-time brackets for the (4, 3)-NLS system

defined in Section 3.3, where we use ψi = ψ(n,i) and ψ̄i = ψ̄(n,i):

{ψi, ψj} = {ψ̄i, ψ̄j} = 0,

{ψ0, ψ̄0} = {ψ0, ψ̄1} = {ψ1, ψ̄0} = {ψ1, ψ̄2} = {ψ2, ψ̄1} = {ψ2, ψ̄2} = 0,

{ψ0(a), ψ̄2(b)} = {ψ1(a), ψ̄1(b)} = {ψ2(a), ψ̄0(b)} =
−i

2
δ(a− b).

(A.3.19)

To connect this equal-space Poisson structure for the complex mKdV equation to the

version presented in [32], we need to transform our six fields as ψ0 = 1
4
b1, ψ̄0 = 1

4
c1,

ψ1 = 1
2
√

2i
b2, ψ̄1 = 1

2
√

2i
c2, ψ2 = 1

2i
b3 + 1

16i
b2

1c1, and ψ̄2 = 1
2i
c3 + 1

16i
b1c

2
1.
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