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Lax Pairs

The auxiliary linear problem is the pair of relations [Lax '68; Ablowitz, et al. '74]:
v, =UY, v, =V,

where the matrices (U, V) are called the Lax pair. The compatibility of

these two equations is called the zero-curvature condition:

0="U, -V, +[U,V].

For a given Lax pair, the associated equations of motion can be found by
inserting the U- and V-matrices into this relation.
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r-Matrices

Given an r-matrix that satisfies the classical Yang-Baxter equation
[Semenov-Tian-Shansky '83]:

[r12(A = ), r13(N)] + [r1i2(A — p), r23(1)] + [r13(A), re3(p)] = 0,
then the Poisson brackets associated to a Lax matrix U can be found
through [Skiyanin '79]:

{U1(x, A), Uz(y, ) }s = [r12(A — ), Ur(x, A) + Uz(y, p)] 6(z — y).

For all of the models in this talk the r-matrices are proportional to:

Pro =

S O O
O = OO
SO = O
= O OO
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K -Matrices

To incorporate non-periodic, non-vanishing boundary conditions into a
system on the interval [—L, L], we introduce some matrices K that lie
at the £L boundaries.

So that the integrability of the system is preserved, we need the
K -matrices to satisfy [Sklyanin '87]:

0=Ki1(M)riz(A + p)Kx 2(p) — K 2(p)r12(A + p) Kx 1 (A)
+ [r12(A — p), K1 (M) K 2(p)]-
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Constructing Hierarchies

Build monodromy matrix T's(x, y; \) from the spatial component of the
Lax pair:

Ts(z,y; \) = Pexp / /U(s;)\)ds.
Jy

Taking the trace of the full monodromy matrix Ts(L, —L; \) gives the

transfer matrix:
ts(\) = tr {Ts(L, —L; \)}.

When considering open boundary conditions, the transfer matrix becomes
[Sklyanin '87]:

ts(\) = tr {K (N Ts(L, —L; \)K_(\)Tg (L, —L; —\)}.
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Constructing Hierarchies
Conserved Quantities

Expanding Gg = In tg and Gg = In {g about \:
k.

gives a series of quantities that Poisson commute with one another (with
respect to {-,-}s):

(69,6915 =0=1{G$,69}s.

Treating one of these Gg as the Hamiltonian gives a tower of commuting
conserved quantities.
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Constructing Hierarchies
V' -matrices

For each conserved quantity Qém there is a corresponding V-matrix such
that Hamilton's equation and the zero-curvature condition give the same
evolution equations. These V-matrices are generated by
[Semenov-Tian-Shansky '83]:

Va(z; A, 1) = tg' (wtr {Ts1 (L, x5 p)ria(p — N Tsa (2, —Ly )},

and for open boundary conditions [Avan, Doikou '08]:

Va(x) = s (1) tri{K 1 (1) Ts,1 (L, 5 )ri5Ts,1 (@, —Li ) K1 (1) T 1 (— )
+ Ky 1 (WTsa(WE-1(WT51 (@, =L —p)rihTsq (L@ —p) ).

The boundary conditions then arise from requiring:

lim V(z) = V(£L).

z—+L
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Non-Linear Schrodinger

The equations of motion are:

_iwt = w:wc - 2"'“/)‘1/}‘27 ”/;t = 1/317. - 2HQZ|’(/J|2
These come from the Hamiltonian and Poisson brackets:
L —_ —
Hs = [ (slul* = vusd)da, {0(@), d()}s =18 — ),
L

which are found from the Lax pair [Zakharov, Shabat '71]:

o= (he ) v )

and the r-matrix r12(\) = F=P1a.
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Isotropic Landau-Lifshitz

The equations of motion are (using S = (S, S5, S3)7):

— —

St - |§ X S:I::I:~
These come from the Hamiltonian and Poisson brackets:

1

L
Hs = 5/ S |*d, {Si(z), S;(y)}s = —i€ix Sk 6(x — y).
-1

These in turn are found from the Lax pair [Takhtajan '77]:

1 Sy S1—iSs 1 Lo 1o

U:2/\(S1+i52 —S3 >:2)\S7 V:ﬁ 2\

and the r-matrix r12(\) = 57312_
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r-Matrices
Dual Picture

For dual models, the dual Poisson brackets associated to the time
component of the Lax pair, V, can be found through [Avan, et al. '16]:

Vit A), Valte, e = [F12(A — p), Vi(te, A) + Va(te, p)] 6(t1 — t2),
where 715 is a solution of the classical Yang-Baxter equation. Then, if

the dual Hamiltonian is known, the space-evolution equations are found
through a dual version of Hamilton's equation:

0.V ={Hp,V}r.
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Constructing Hierarchies
Dual Picture

Consider instead the dual picture, where we study space-evolution. The
equal-space monodromy matrix is:

t1
Tr(ti,ta; A) = chp/ V(s; N)ds.

Jtg

The trace of the full monodromy matrix Tr(7, —7; \), on the interval
[—7, 7], gives the equal-space transfer matrix:

tr(A) = tr{Tr(1,—7; ) }.
When considering open boundary conditions, the transfer matrix becomes
[Doikou, IF, Sklaveniti '18]:

tr(\) = tr {K; (N Tr(r, —1; VK- (N T (7, —75 =) }.
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Constructing Hierarchies
Dual Conserved Quantities

Expanding Gr = In t7 and Gy = In Ty about \:

Gr(\) = > Xgf, Gr(\) =D NG,
k k

gives a series of quantities that Poisson commute with one another (with
respect to {-,-}r):

{61,69r =0={G1",6}r.

Treating one of these G as the dual Hamiltonian gives a tower of
commuting conserved (with respect to space-evolution) quantities.
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Constructing Hierarchies
U-matrices

For each conserved quantity Q(Tk> there is a corresponding U-matrix such
that Hamilton's equation and the zero-curvature condition give the same
evolution equations. These U-matrices are generated by [Avan, et al. '16]:

Uz (t; A, ) = " ()tr {Tra (1,8 )iz (e — N T (t, =75 1)},
while the in the case of open boundary conditions it is [Doikou, IF, Sklaveniti
18]

Ua(t) =t () tri{ K4 1 (1) Tr1 (7, 6 w)Fra Tra (¢, =75 w) K- 1 (1) Ty 1 (— 1)
+ Ky 1 (1) Tra(w) K- 1 ()T (8, —73 — )7L Tr 1 (1,8 —p) ).

The boundary conditions then arise from requiring:
lim U(¢) = U(%7).

t—+T
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Non-Linear Schrodinger
The Dual Model

The dual equations of motion are [Avan, et al. '16]:

Ve = @, QZCL = <57
bo = 269|907 — iy, Bo = 260 |9|? + ithy.

These are generated by the dual Hamiltonian:
tr = [ (elult = 10 + wB)et,

via the dual Poisson brackets (found from 715(\) = —r12(\) = §P12):

{1(t1), d(t2)}r = {Y(t1), ¢(t2)}r = 6(t1 — t2),

with the rest being trivial.
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Non-Linear Schrodinger
Boundary Conditions

The most general boundary K-matrix is [de Vega, Gonzalez-Ruiz '94]:

_ at dy by
Ky = /\H+<Ci _di>.

The boundary conditions at t = +7 are:

t=+47: dy =0, Y =ay + by,
t=—71: d_ =0, W =a_+c_1.

For comparison, the boundary conditions at x = +L are:

bi:CiZO, di:717
Yy = Faxp, 1/;.'12 = iaidj
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Isotropic Landau-Lifshitz
The Dual Model

—

S, =3, S, =19 x G, — §|52.

These are found from the dual Hamiltonian:

=7 | (|i22151’tﬁ2+;3152¢>dt’

—T

via the dual Poisson brackets (found by using 712(\) = r12(\) = 55P12),
which have two Casimir elements, |5|2 and S - 3::

{Si(t1), Sj(t2)}r =0,

{Si(t1), 5 (t2)}r = (8iS; — dij) 8(t1 — t2),

{Zi(t1), Z;(t2) }r = (8i% — S;%4) 6(t1 — ta).
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Isotropic Landau-Lifshitz

Boundary Conditions

The boundary K-matrix is chosen to be equivalent to the one for NLS:

d+ B+ — i%)
Ky =ail+ X . .
S <5i +ive  —di

At t = 47 the boundary conditions are:

ax =0, 0= p+S1 +v+S2 +d+Ss.

For comparison, the boundary conditions at = = +L are:

a4 (51,552 — 5152.4) = £(BLS2 — v+.51),
a+ (5153, — S1.4593) = £(d+S1 — +S3),
ax (52534 — S2.453) = £(drS2 — v+ 53).
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Combining Hierarchies

The standard picture gives a hierarchy of integrable systems (defined by
their time-evolution), while the dual picture gives a hierarchy of
integrable systems (defined by their space-evolution).

By alternating which picture is considered, we can build a 2-dimensional
“lattice” of integrable systems. This is not a priori commutative.

2 . . —>
14 T—)I
0 T T

0 1 2 U
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Non-Linear Schrodinger
Higher System

y
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Blue circle - The NLS model
Green dashed region - The usual NLS hierarchy
Red circle - A new, 4-field system
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Non-Linear Schrodinger
Higher System

The usual NLS is at (2, 3). We can consider instead (4, 3). The Lax pair
for this model re-uses the V-matrix from the standard NLS model:

_ e (VEWE = 69) —ity ) -

U=k ( e —vRwe— o) MV

. ( S MME —VE(N + i%)) .
~VRN —igs) A — ikl

The corresponding equations of motion are:

Vo = 26 (Y — V) + iy,

Vo = 26 (P — ) — iy,
bz = 26(Vp — Y) + ik [Py + Yy,
br = 260(Vd — V) — 2iK|Y >y + -
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Isotropic Landau-Lifshitz
Higher System

O

o
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Blue circle - The isotropic LL model
Green dashed region - The usual isotropic LL hierarchy

Red circle - A new, 6-field system
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Isotropic Landau-Lifshitz
Higher System

The usual ILL is at (0, 1). We can consider instead (2, 1). The Lax pair
for this model re-uses the VV-matrix from the standard ILL model:

1 : 1,
Uf2)\3S 53355 — 755+ﬁz S,
1 1
V=0 =S

The corresponding equations of motion are:
~ - 1 oo
S, =i(S x %) + 42\22,
S =i(3 x %) — 42\ (S x 8) +iZ(Z- (S x Sy)

s
+ S8 + S(|St‘2 - §|2‘4)-
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Future Work

» Building a dual construction of the fully anisotropic Landau-Lifshitz
(both NLS and the isotropic LL are special cases of this).

» Finding a solution to an equation with time-like boundary conditions
(via, e.g., inverse scattering on the half-line).

» Performing a more detailed investigation of the properties of the
higher order systems (e.g. looking for physical interpretations,
finding solutions).
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